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Medium-Voltage Direct-Current (MVDC) power system has been considered as
the trending technology for future All-Electric Ships (AES) to produce, convert and
distribute electrical power. With the wide employment of high-frequency power
electronics converters and motor drives in DC system, accurate and fast assessment of
system dynamic behaviors , as well as the optimization of system transient performance
have become serious concerns for system-level studies, high-level control designs and
power management algorithm development.

The proposed technique presents a coordinated and automated approach to
determine the system adjustment strategy for naval power systems to improve the
transient performance and prevent potential instability following a system contingency.
In contrast with the conventional design schemes that heavily rely on the human
operators and pre-specified rules/set points, we focus on the development of the
capability to automatically and efficiently detect and react to system state changes
following disturbances and or damages by incooperating different system components to

formulate an overall system-level solution. To achieve this objective, we propose a
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generic model-based predictive management framework that can be applied to a variety
of Shipboard Power System (SPS) applications to meet the stringent performance
requirements under different operating conditions. The proposed technique is proven to
effectively prevent the system from instability caused by known and unknown
disturbances with little or none human intervention under a variety of operation
conditions.

The management framework proposed in this dissertation is designed based on
the concept of Model Predictive Control (MPC) techniques. A numerical approximation
of the actual system is used to predict future system behaviors based on the current states
and the candidate control input sequences. Based on the predictions the optimal control
solution is chosen and applied as the current control input. The effectiveness and
efficiency of the proposed framework can be evaluated conveniently based on a series of
performance criteria such as fitness, robustness and computational overhead. An
automatic system modeling, analysis and synthesis software environment is also
introduced in this dissertation to facilitate the rapid implementation of the proposed

performance management framework according to various testing scenarios.
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CHAPTER I

INTRODUCTION

1.1  Background

Electrical power system is becoming the backbone of the next-generation naval
ships as it supplies energy to various onboard system components including weapon
system, service system, operation system and propulsion system [1]. Compared with the
conventional ship designs which rely on auxiliary systems that are steam powered or
hydraulically powered, electrical drive offers significant benefits in terms of reducing the
life-cycle cost, increasing the payload and survivability. The next generation Navy
warships are envisioned to be fully electricity driven and have a power demand of upto
100 Megawatts. In order to meet that such critical power requirements, the Integrated
Power System (IPS) is proposed as a solution to provide the power to serve a variety of
onboard loads [2]. Considering the critical role the power system is playing for ship
operation, relying on the conventional self-recovery mechanism or manual control of the
electric power system can no longer meet the performance standard. A dynamic
performance-oriented power management framework for the analysis and design of SPS
is necessary [3] and becomes an urgent requirement for the design of future onboard

power control systems.
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1.2 Challenges and Motivations

The rapid growth in computer science and communication technology has made
smooth and flexible information sensing and transmission system possible. As
information including system-wide voltage levels, directions of power flows and real-
time component status has become available upon request, the new control schemes
could take advantage of this information and perform dynamic performance management
determined based on a cooperative global basis to enhance the system stability and
optimize the performance.

Based on the prior discussion, there are three main challenges we need to
overcome in this framework. One of the challenges is that the unique characteristics of
SPS requires explicit high-resolution modeling of system components transient phases
[4]. The models have to be developed specifically for the dynamic analysis of SPS, so
they can provide precise insight for system dynamic behavior investigations. Another
challenge is with the computational burden of time domain simulation to meet the
stringent requirement of real-time operations. For the evaluation process, any small
variations on system parameters would result in a complete re-computation of the whole
system, thus making the performance assessment difficult for actual implementation.
Lastly, the dynamic management framework should have certain degrees of flexibility so
that it can be easily adapted to a variety of operation scenarios. It is also desirable that the
dynamic management can be open-ended and extensible to be integrated with other
management functions such as Quality of Service (QoS) management or fuel economy

management to form a unified SPS energy management and regulation system [5].
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For the last decade, model-based control has gained increasing attention in the
different engineering fields as an attractive approach for system-wide automatic
management [6]. Among various optimization and management techniques, the design
concept of model predictive control (MPC) has been proven for its flexibility, accuracy,
and effectiveness. A series of application designs utilizing MPC techniques can be found
in [7-11]. MPC refers to the generic control techniques that predict the future system
states over a certain length of “prediction horizon” based on a given objective function, a
set of candidate control inputs, an accurate approximation of the system behavior, and the
current system state measurements. The first element of the input sequence that results in
the optimized future system state prediction is then chosen and applied to the current
system. Previous works have demonstrated that MPC techniques can be used to generate
a coordinated solution to optimize the operation of power systems and enhance the
stability and reliability of systems affected by disturbances or faults. A combination of
restoration procedures including system-level adjustments like load shedding and
reconfiguration or component-level adjustment like system setting change can be utilized.
The optimization objective is formulated based on system states represented in the form
of nonlinear differential algebraic equations (DAESs) [8, 10] or linearized DAEs. While
MPC has been found to have a great potential to solve the dynamic performance
optimization problem and enhance the overall system reliability for terrestrial power
systems, it has not been considered in analysis and design practice for SPS yet.

Another important factor for dynamic analysis practice, especially for power
systems, is that the accuracy of the magnitude or frequency evaluation is closely related

to the equivalent system model used to represent the actual physical behaviors over the

3
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time frame of interest. In another word, there does not exist a set of “standard”
component models that can be used for different types of performance analysis. The
models have to be tailored to the scope of the specific study case by case [12, 13]. This
factor needs to be carefully considered during the modeling phase for MPC design

practice.

1.3 Research Statement

To start, an appropriate numerical modeling approach is developed specifically
for the system-level analysis and control strategy design for MVDC SPS. The
architecture of the latest MVDC base-line model and its notional functional block
decomposition are illustrated with their exclusive modeling requirements respectively.
Those functional blocks can be seen as the highly simplified abstractions of the physical
shipboard power system components. A novel modeling strategy is then proposed as an
extension to the existing literature to fully include the stator transient dynamics of the
synchronous machines in order to accurately capture the dynamic characteristics of the
system following local or system-wide disturbances that are necessary for system-level
studies. The proposed modeling approach is verified against conventional steady-state
modeling techniques and the corresponding equivalent Simulink models/RDTS models.
Its simulation speed is also justified to meet the requirement for the system-level analysis
and designs. Once the modeling strategy is fixed, the model-based performance
management system can be developed.

In this dissertation, a flexible and automated system-level dynamic performance
management framework with consideration of optimizing the dynamic transient

responses following a system disturbance is proposed. In this framework, MPC technique
4
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is used to achieve an overall system-side optimized solution that fulfills the requirement
of operating conditions and fits the stringent performance specifications and various
constraints. Time constraints (in another word computational efficiency) and the detailed
performance criteria as suggested by the Electric Ship Research and Development
Consortium (ESRDC) with regards to the dynamic transient responses regulation will be
the main focus of this optimization work. In order to achieve the control objective, we
assume that the system information transmission is instantaneous and always accurate,
and all the system-level control resources are made available for the management
framework [14] including: specification change for component-level controllers like
motor drives and power converter ; shed non-vital loads; switch load feeder between port
bus and starboard bus; shift power generations among main generators and auxiliary
generators and reconfigure the distribution network. With the special characteristics of
SPS taken into consideration, the proposed management framework mainly aims to
achieve the bus voltage regulation and to prevent voltage oscillation simultaneously and
efficiently. At the same time, it can be integrated with other types of power analysis tools
like power balance analysis, fuel consumption analysis, and reliability/survivability
assessment to provide an overall perspective of the system states and generate the optimal
solution to facilitate the operation and design process.

Last but not least, a model-based software environment based on the principle of
Model Integrated Computing (MIC) techniques is developed to support and facilitate the
modeling and simulation process for the shipboard power system and the corresponding
control and management framework design at a high level of abstraction called "meta-

level." Meta-model generate models and specifications that can be directly used by

5
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domain engineers to develop applications, test and simulate the performance with regards
to a variety of different criteria, and synthesize control structures which can later be
automatically translated to executable scripts for the management framework

implementation.

1.4 Organization

The dissertation is organized as follows: the research scope of this dissertation is
proposed in Chapter II followed by a detailed introduction of MVDC SPS including the
system architecture and functional breakdowns, conventional dynamic performance
techniques, average modeling techniques and model predictive control concept. Chapter
III proposed the analytical modeling approach of SPS. The proposed modeling approach
is verified against conventional steady-state modeling techniques, the corresponding
equivalent Simulink models as well as hardware benchmark implemented on RDTS
simulators. The design concept of the performance management framework, as well as
the detailed script /algorithm formulation process is illustrated in Chapter IV; a series of
case studies are presented to demonstrate the effectiveness and applicability of the
proposed control techniques for system-level management strategy development. In
Chapter V, the software tool is developed to facilitate the implementation of the proposed
management framework as well as other types of power system analysis and simulation.

Finally, in Section IV, the dissertation is concluded and future work is discussed.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Research Scope

In order to set the stage for the following discussion, the specific type of analysis
and design that we are focusing on in this dissertation needs to be defined first. A power
system generally contains a variety classes of phenomenon that have different physical
origin and occur within different time scales, as the result there does not exist an
universal model for different types of studies [15]. The level of model fidelity heavily
depends on the design purpose for the application. For SPS, the overall analysis and
design process can be classified and represented using the form of system layers [16].
The hierarchical system architecture can be specified based on the required response time
for the corresponding system operations. Specifically for the purpose of this dissertation,
we consider three layers or levels of analysis and design which is a common practice for
related research work [16, 17] as follows:

e System level (Level I): The response time is within the range of 1 ms upto
1 Sec. Under most circumstances, system level analysis is considered
highly simplified and abstracted as it determines the overall topologies and
functionalities of the system. The primary motivations behind the
development of system-level model are: 1) for the early-stage design

iterations where the parameters and the more detailed system
7
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representations are not yet specified and 2) for the exploration and design
process where system behaviors need to be repeatedly evaluated under a
variety of conditions. Such practice includes high level control or
optimization strategy design, system structure study, and harmonic
resonance study.

e Application level (Level II): The response time is within the range of 100

us upto 1 ms. Application level analysis and design mainly determine the

operation status of system components and their local controllers.

e Physical level or hardware (Level III): The response time is in
microseconds, depending on converter frequency. Analysis on this level
primarily includes the switching operations of high-frequency power
converters, fault protections, and gating signal generation.

While there is a variety of literature covering the modeling and simulation
strategy for application level design and high-frequency component level analysis [18,
19], currently there is very little work focusing on the model formulation for system-level
analysis. Therefore, when it comes to system-level design, usually the static model is
used to approximate the system behavior during the time range of interest [20-23]. A
more accurate model that specifically addresses the requirement of system-level dynamic
studies needs to be developed. Based on the approximate time range of power system
dynamic phenomenon shown in Figure 2.1 [12, 13, 15, 24] where the targeted time range
is marked in red, the main dynamics studied in this dissertation are system resonances
and synchronous machine stator transients. This is also the suggested objective of the

ESRDC technical reports [17, 18])/IEEE standard for system-level dynamic analysis [25]
8
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and to provide the essential criteria to observe the stability properties of the system, as
from the system-wide perspective, the dynamics are mainly triggered by the mechanical
and electrical power difference initiated by disturbance or system structure adjustment.
Based on the nature of performance evaluation criteria, for utility class AC power
system the performance issues can be divided into two categories as rotor angular

regulation and voltage regulation [12, 26]:

2.1.1 Rotor angular regulation

As the name suggests, the angular performance refers to the capability of power
system to remain angular synchronous under disturbances. The performance is directly
related to the generator speed governor and the damper circuit. Typically, angular
desynchronization is represented in the form of aperiodic angular separation due to
insufficient synchronizing torque and defined as "first swing instability." As the SPS is a
tightly coupled system with shot cables and strong synchronizations, the electrical
frequencies of the generators in MVDC system are considered well decoupled from the
DC distribution bus compared with terrestrial AC power systems. The operation of the
generators does not have to be phase locked or synchronized. With this in mind, rotor
angle instability is very unlikely to occur [27]. Results in [28] also suggest that the
inherited generator controls can strongly maintain the angular synchronization. With
those factors taken into consideration, we can reach the conclusion that the angular

performance is not the main objective for the performance management strategy design.
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2.1.2  Voltage regulation

Voltage performance refers to the system's ability to maintain steady voltage
within acceptable range at all buses. Voltage instability is usually caused by the excessive
demand of reactive power and directly related to the performance of the generator
excitation systems for the design and implementation of SPS applications. Especially
considering the fact that multiple generators are connected to the same DC bus, the
machines would interfere with others to regulate the bus voltage, and this easily leads to
the large voltage swings. Therefore, for the MVDC SPS, the DC voltage of the
distribution bus should be stringently regulated within desired margins both under “pre-
fault” and “post-fault outage” conditions for improving security, reliability and
survivability [29]. More specifically, the desired performance evaluation metrics have
been mentioned in [30, 31] as the standard for voltage-regulation related system studies.
This standard will be modified and adopted here as the performance criteria that the

proposed management framework aims to achieve.

Table 2.1  Performance metrics for the voltage regulation [30]

Performance Metrics General specification
Desired Bus Voltage 5kV
Voltage Ripple 1.5%
Maximum Transient Recovery Time 0.1 Sec
Voltage Transient Range +/- 10%

In other words, the voltage regulation needs to be achieved, and the voltage
oscillation needs to be suppressed simultaneously and promptly to keep the system states

within the desired region.
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Figure 2.1  Time scale of dynamic phenomena [13, 24]

2.2 Overview of SPS: Definition and special characteristics

As a micro-grid power system, SPS is considered an independently controlled
small electric network and is powered by the distributed generation system [32]. In order
to determine an effective management approach for SPS, it is critical to capture the
unique natures of SPS as a non-conventional power grid and pay special attention for the
specific requirement for modeling, analysis and design based on the following
characteristics [3, 33]:

e Length of power cables is limited by the size of the ship, which determines
that the dynamics of transmission lines do not significantly affect the

overall system behavior and can be ignored.

11
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e System state information is transmitted very quickly within the system due
to the close physical proximity, making the interconnections among
different components important. The close electrical proximity also
guarantees generators are strongly synchronized.

e With limited generation capacity and rotational inertia, generators are very
sensitive to load changes, especially when the loads are rated at a
significant fraction of the generating capacity of the system. Large
dynamic load variations can lead to large voltage and frequency deviations
on the interconnected distribution bus.

Overall, the tightly coupled nature of the distribution network, the limited
generation capacity and the lack of generator inertia have determined that even tiny
disturbance(s) within the system would cause large dynamic responses. Thus, compared
with conventional power system grid, the SPS is more fragile and prone to faults and
failures.

The uniqueness of SPS also leads to the conclusion that common assumptions and
approximations that have been broadly used in the terrestrial power system; for example,
the definition of infinite bus and slack generator does not apply to the SPS. With this in
mind, common power system analysis tools/packages cannot be used to perform the
dynamic analysis of SPS. Higher order models and real-time simulations are suggested
especially for dynamic evaluations.

On the other hand, as the onboard power system is responsible for supplying
energy to nearly all the vital modules, it is extremely critical to maintain the power

system working properly under different operating conditions; thus, the reliability and
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stability of an SPS is the top priority both under adverse conditions and normal
operations regarding the ship designs. Damages to the power systems can directly lead to
the failure of the ship’s mission. Some real examples of such catastrophes are shown as
follows:

e InJanuary, 1988, USS Samuel B. Roberts struck an M-08 Naval mine in
the central Persian Gulf. The engine room with two gas turbines were
flooded and the ship used its auxiliary thrusters to get out of the mine field
[34]. It did not lose full combat capability with radars and missile
launchers.

e On February, 18, 1991, during Operation Desert Storm, USS Princeton
was hit by two influence mines. It caused the ship to lose power and the

weapon/combat system did not get back online until fifteen minutes later

[35].
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Figure 2.2  U.S. Navy's new 'all-electric' USS Zumwalt destroyer (DDG1000) [36]

23 MVDCSPS

A new system integration and power distribution architecture called medium-
voltage DC (MVDC) has been developed for all-electrical naval vessels. As the name
suggests, it refers to the power transmission system that relies on direct current (DC) as
the transmission media. Compared with traditional AC-based architecture, the MVDC
power system has several advantages [21, 31] including:

e Higher power transfer capability based on the DC level

e Easy connections and disconnections for both power sources and loads
through the use of power converters as connection interfaces

e Potential number, size, weight and rating reduction and simpler cabling

e Improved management of faults and disturbances utilizing the controlled

power electronics switchers
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e Higher power density and potential better system efficiency
The general design concept of a typical MVDC system can be found in Figure

2.3.

PC e —{(702

Starboard

MVDC Bus

Zonal Zonal Zonal Zonal Stern
Bow SSCM Load 1 SSIM Load 2 SSCM Load 3 Load 4

ror s
SSCM Load

PC
B @ Rectifier : @ ﬂ

GT: Gas Turbine Rectifier: (3-(|) AC to DC)
SSCM: Ship Service Converter Module PC: Propulsion Converter (3- (I) DC to AC)
(DC — DC converter) IM: Induction Machine

SSIM: Ship Service Inverter Module
(DC - AC converter)

Figure 2.3 A design concept of MVDC SPS

To set the stage of this dissertation, a notional MVDC Next Generation Integrated
Power System (NGIPS) model that was originally developed by the Office of Naval
Research (ONR) and the ESRDC is used as the baseline topology for the corresponding
model development [19, 25]. The standard modules and function diagrams in the

preliminary model of a notional MVDC NGIPS include [18, 37]:
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2.3.1 Propulsion modules

Electric power is converted into mechanical power through propulsion induction

motors and propellers. The propulsion motors consist of two GE's Advanced Induction

Motors (AIM) with 35MW rater power. A simplified one-line diagram of an induction

motor along with its motor drive and propeller is shown in Figure 2.4.

Motor
Drive
Controls

—wv-f"‘"\_-l_
T
AC
Filter

K

Motor
Drive

Fixed-
Pitch
Propeller

Ship

Hydrodynamic

Figure 2.4 A simplified one-line representation of the propulsion system

2.3.2 Power generation modules

The electrical power is provided by two main generators (MTGs) rated at 36MW

(45MVA) and two auxiliary generators (ATGs) rated at 4AMW (5MVA). The generator

modules consist of notional 3600 rpm twin shaft Rolls-Royce MT 30 gas turbines as the

prime movers for MTGs and 14400 rpm single shaft General Electric LM500 gas

turbines for ATGs, round rotor synchronous machines, the IEEE Type AC8B [38]

exciters, and notional diode rectifiers [18]. A simplified one-line diagram representing a

synchronous machine and its prime mover, exciter and rectifiers is shown in Figure 2.5

while the detailed structure of the generator with signal flows is illustrated in Figure 2.6.
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For the current electric model, the gas turbine is represented in the form of a set of

transfer functi

Figure 2.5
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2.3.3 Power distribution modules

Zonal electrical distribution system is utilized in MVDC SPS. There are one main
generator and one auxiliary generator on each side of the network (Port bus and Starboard
bus) along with the induction motor drives. Ship loads are distributed in four zones from
bow to stern and supplied from both port and starboard DC buses. The main bus of

MVDC system is a 5kV DC bus.

2.3.4 Switching gears

All the electrical components are connected to the main MVDC bus with a
disconnect device that determines the power flow directions, include simple disconnect
means like switches, circuit breakers, or more complex ones like manual bus transfers
(MBTs) and automatic bus transfer (ABTs). To handle unexpected possible damages,
there are switches attached to the cross-hull connections as well. This creates a “split-
plant” configuration to provide maximized reliability. For simplicity, it is assumed that
switches are able to instantly connect and disconnect the corresponding component from

the distribution network.

2.3.5 Power conversion modules:

Conversion modules convert electric energy from one form to another. Typical
on-board conversion modules include power converters which convert energy between
three phase AC components and DC distribution bus (AC/DC as rectifier, e.g. the
generator rectifier or DC/AC as inverter, e.g. the propeller converter). For ship service
loads distributed in different zones, there are also Ship Service Converter Modules

(SSCMs) and Ship Service Inverter Modules (SSIMs) that are directly fed from the main
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DC distribution bus and convert appropriate voltage to the zonal service loads either in
the form of DC or AC. Power converters are considered as the main interface between the
grid and corresponding components; thus, controls of converters are expected to facilitate

the connection and removal operation in a fast and yet stable manner.

2.3.6 Power loads

Electric loads consume the power generated by the power generation module.
Future electrical ships are expected to carry a variety of loads that range from
conventional facility loads to high power radar loads and pulse loads. Based on their
electronics characteristics, electrical equipment can be classified as resistive constant
impedance/resistance loads, constant power loads and pulse loads, e.g. electromagnetic
aircraft launch system, rail guns, and laser weapons. For the NGIPS model, there are a
total of 22 lumped-parameter loads within 4 zones, including two AC zonal loads
supplied from a 450V AC bus, two DC zonal loads supplied from an 800V DC bus and a
pulse load as a stand-alone load center connected to the network. The load specification
can be switched between different operation modes.

As various loads and induction motors within the system are directly fed from the
main DC bus via high-bandwidth power conversion equipment, they would exhibit a
behavior called "Constant Power Load (CPL) behavior”, which suggests that loads tend
to keep constant power consumption under fast current or voltage variations [39-41] and
therefore act in the similar way as negative incremental resistances. The detailed

systematic review of CPL theory can be found below.
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2.3.6.1 CPL theory and application

With the increasing employment of power electronic converters and electric
motor drives in the advanced electrical systems containing multi-voltage level AC and
DC components. Assessment of the concept of CPL and the study of has been made in
[42-44] for advanced automotive power system and aircraft power systems [45, 46]. An
illustrative of CPL is a dc/ac inverter which is assumed to be tightly regulated with the
rotating load that has one-to-one torque—speed characteristic i.e. linear relation between
torque and speed, and drive an electric motor. For this inverter, it behaves as a CPL at the
input terminal, as the input current decreases/increases when the input voltage
increases/decreases. As a result, CPL has "negative impedance characteristic" and
therefore introduces a destabilizing effect in the DC micro-grid that might cause the main
distribution bus voltage to show severe oscillation. A demonstration of the typical CPL

concept is shown as in Figure 2.7.

Fast Voltage
L:ej ....... > Regu]at]ng T ;
Controller i
N H
+ + P
DC BUS E > Power Converter R% Vo = i(1)y=—
- < V(1)

Constant P,

Figure 2.7  CPL characteristics [32]

Constant power load assumption is one of the most common hypotheses for

simplifying model dynamics for system-level studies. Its validity is justified by the
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employment of fast and robust converter controllers. As those high-frequency controllers
effectively manage the current flow of the loads, the variation of load currents are not
directly reflected as seen from the distribution network. CPL characteristic plays a very
important role in simplifying the load characteristics [42] but also raises the issue of

instability due to the negative impedance characteristics.

2.4 Modeling strategy for SPS
2.4.1 Overview

Based on the previous discussion, an appropriate modeling of shipboard power
system is of critical importance to the design of shipboard applications. As a general
modeling rule, it is impossible to develop models that include all the dynamics of the
power system and can still of practical use. The level of fidelity of the model heavily
depends on the design purpose for an application. In another word, for different design
purposes, different modeling approaches are desired to facilitate corresponding
evaluation. Based on the previous discussion, we have made the conclusion that for the
design of the proposed dynamic performance management framework, a time-domain
simulation based modeling approach would be desirable.

With the recent development of simulation software packages, a detailed model
that considering all the details including the high-frequency converter switching actions
has been developed and made available through various simulation platforms. The system
is assembled in the form of Differential Algebraic Equations (DAEs) where the linear
time-invariant part is represented in state-space equations and the time-domain transient

responses are constructed by integrating the state-space equations using either fixed or
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variable-step Ordinary Differential Equation (ODE) solvers that are provided with the
embedded numerical engine i.e. Matlab.

Although the detailed model could be an option for the system-level study, due to
the wide usage of power electronic converters within the system which requires relatively
small simulation time steps and the complexity of detailed component structures, it
inevitably suffers from the slow simulation speed [19, 37] which makes the high-fidelity
model difficult and computationally expensive to be used for system-level analysis and
design. Another important factor with power electronics switches is that the detailed
switching actions make the system discontinuous which adds significant complexity and
makes it impossible to be converted to linearized form for stability assessment and other
form of analysis. In this case, a time-efficient and continuous representation of shipboard
power system model is required.

A very common way to achieve that is by utilizing the reduced order modeling
approach wherein the high-frequency dynamics of the system are "neglected" or
"averaged" and the semiconductor switching is represented in the form of average-value
formulation [47].With the implementation of average-value modeling techniques, it is
expected that the numerical complexity can be reduced and the simulation efficiency can
be improved with larger integration time steps to meet the requirement for management
framework design.

Another way simplification can be implemented is to represent components in the
abstracted forms based on the system-level analysis requirements and the proposed time
range of interest rather than on the physical details. Combining the AVM techniques with
the component simplifications, a much simplified representation of the originally
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complicated system can be derived to specifically serve the need for high level studies
and system-wide management design.

A general review of definitions and applications of dynamic average models for
power system analysis can be found as in [48, 49] which was performed by IEEE Task
Force on dynamic average modeling. The use of reduced-order average-value models is
well established for distributed DC power system of spacecraft, aircraft, naval electrical
systems and vehicular electric power systems. It has also been applied to variable speed
wind energy systems [50-52]. For the purpose of this research work, we particularly
consider the average-value modeling development for multi-phase rectifiers that have the
typical configuration diagram as shown in Figure 2.8. Based on different cases, the power
source could be a distribution AC power feeder (Case I) that is represented in its
Thevenin equivalent voltages, series inductances and resistances, or a rotating machine
(Case II) that is represented using the voltage-behind-reactance formulation which results
in the similar form of Case I; the six pulse line commutated rectifiers could include an
optional AC filter on the AC side and an optional DC filter on the DC side. The load(s)
that is (are) connected to the DC network is (are) represented in the form of an equivalent
resistor [53, 54]. Although this simplification representation ignores the inter-harmonics
[55], it is commonly accepted in the low and medium power applications and considered
valid for this work [49]. This configuration can be found as the input stage for a variety

of medium power drives, motor loads and distribution networks.
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Figure 2.8  Typical configuration of a three phase line-commutated rectifier system

For the following discussion, it is assumed that the three-phase six-pulse rectifier

is always working in the continuous conduction mode (CCM) and particularly under

Model where the commutation angle 4 stays in the range of 0< 1 <60° or under Mode

2 where 12 = 60°. The reason behind this assumption is that CCM3 is an extreme

condition and typically not considered in MVDC system while discontinuous conduction
mode (DCM) is always intentionally avoided.
The generic fast averaging process over a prototypical switching interval can be

defined as [56]:

o=, 1@ 1)

where /(x) indicates the system state equation and f(f) can be seen as the

average value of f(x) over a small period of time 7.
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2.4.2 Dynamic average modeling

For this three-phase diode rectifier model, various different modeling
methodologies have been proposed in the literature. Those methodologies can be
classified into two types of approaches: analytical and parametric. For the analytical
approach, the system state variables like voltages or currents and their relationships are
explicitly defined in the form of algebraic equations. With the pre-specified boundary
conditions, the averaged representation of fast system state variations can then be derived
analytically. Two analytical methods that are of particular interest of this dissertation can
be found in [56-61] as the classic reduced order form (AVM-1) and [62-64] as the
improved reduced order form (AVM-2) [48]. The details of those two modeling strategies

and their essential difference will be briefed shortly in the following session:

2.4.2.1  Analytical approach

@Dl D3 DS

— v/oad

Figure 2.9 A three-phase voltage source fed load-commutated rectifier system [56]
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A circuit diagram of the voltage source fed load-commutated rectifier system is
shown in Figure 2.9. The AC source are represented in the form of an ideal three phase

balanced voltage source v, , v,, and v, with constant commutation inductance L. On

2
the DC side, an RLC filter is deployed where the equivalent DC resistor and inductance is
denoted as R, and L, respectively. The corresponding capacitor voltage is denoted as
Vioaa - G1VeN @ = @, ¢, and considering the phase delay effect caused by the commutation
inductances, the over-all voltage that supplied from the AC side can be expressed as:

v, =Ecos(¢)+L, -di,/dt

v,, = Ecos(¢p—2x/3)+ L, -di,/dt (2.2)
v, =Ecos(¢+27/3)+ L, -di |dt

To further simplify the analysis procedure, it is assumed that the diode rectifier is
lossless and its forward voltage drop and on-state resistance are neglected.

As the switching of the diode bridge is periodic in 7/3 radian of the voltage
angular displacement ¢, any /3 interval could be picked to develop the average
representation of the voltage v, . For this work, we will pick up the interval of [0, /3] as

the averaging interval of interest. The dynamic average DC voltage on the DC side can be

represented in the form of:

=2 [Pl M+ Ly i) e
0 V4 0

The over-bar is used to denote the fast average value during dynamical conditions
which indicate that unlike steady-state operation, the corresponding system state

variations (e.g. the variation of the amplitude of the voltage) are allowed; however, the
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averaging operation is assumed to be relatively faster. Therefore the variation from one
averaging interval to the next is relatively small. To find the boundary conditions to solve

(2.3), the three phase conducted currents within the interval can be expressed as:

i =[0,7,(0),~,(0)]
==, (1), 1, (10),0] (2.4)

0,=x/3 =[~i,(7/3),i,(7/3),0]

abc |g

labc

abc
where  refers to the commutation angle and i, (¢) indicates the instantaneous

value of DC current output on the DC side. To determine the representation of i,(7),

AVM-1 and AVM-2 have provided different approximations.

In AVM-1, i,(0) is approximated by the representation of i, and accordingly,

i,(7/3) is represented as i, + Ai, which yields the following boundary condition:

i

abc |g

=[0,7,,~7,]
_ 2.5
I Hl:[—id—Aid,id—kAid,O] 2:3)
573

abc

where A, is used to denote the average DC current variation over the averaging

interval due to long-time slow system dynamics and can be approximated as:

AT = ﬁdld: T dld (2.6)
3dgp 3o, di

Substitute (2.6) into (2.3), the average DC voltage can be obtained as:

v =2 BE+2 Lo, - or, 4
V4 V4 dt

2.7)

Considering the effect of the RLC filter, based on Kirchhoff's voltage law:
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‘_}d = Rch] + ‘de ’ dl_/dt + Vload (28)
Combine (2.7) and (2.8), the complete averaged formulation of DAE that

describing the characteristics of the rectifier can be derived as:

i 3\/§E—(Rd,+3L,a) )i, = Vi
i T c T cg oa

_ 2.9
dt de + 2L{,‘ ( )
with the commutation angle expressed as:
p =arccos(1-2L w,7, [\NBE) (2.10)

The approximation used in (2.6) only holds true when the variation of i, during

the averaging interval stays consistent; however, this may not always be accurate due to

the possibility of large system state change. In another word, Ai, need to be defined in a

more specific way to capture the dynamic averaging variation during the switching
interval. An attempt to improve the dynamic accuracy of AVM-1 approach is introduced

in approach AVM-2, where i, is approximated using its first-order Taylor expansion as:

i,(0)=i,,+k(0-2/1) (2.11)
where i, is defined as the average value of i, during the commutation period and
stays as a constant, # is the commutation angle, and £ is the coefficient that captures
di,/dO during the averaging interval.
As AVM-2 has provided an explicit representation of i, with respect of the time,

a better accuracy is expected for the rectifier output voltage. With the new representation,

the boundary conditions given in (2.4) can be updated correspondingly into:
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i

abc

6. <0 =[0,i, k- 1/2, i, + k- /2]

&g

oy = Tlao =k 11/ 2,00 + k- 1/2,0] (2.12)

O,=1/3 (g0 — k()3 = 14/2),is0 + k(7/3— 14/2),0]

i

abc

1

abc

Then the new formulation of v, can be derived with the updated terminal current

boundary conditions following the same procedure as AVM-1, which result in a new

representation of DAE as:

3 3 .
dl'd ; \/gE - (Rdc + ; Lca)g )ldO ~Vioud (2 13)

dt de + Lc (2 - 3ﬂ
2

where 4= arccos(1-2L w,i,, / BE)

Compare (2.9) with (2.13), we could observe that the formulation of AVM-1 and
AVM-2 are very similar with only different coefficient of the commutation inductance

L. . In another word, the improvement of AVM-2 approach is presented in the form of an
additional inductance connected in series with L, .

With the explicit form of averaged DC current, for AVM-1, the three-phase AC
currents throughout the rectifier during the averaging interval can be established in d-q

frame (the reference frame) as:

~r _Tr -r
lq - lq,com + lq,cond

K (2.14)

~r  Tr -r
ld - ld,cam + ld,cond

where the commutation and conduction component of the current can be found as:
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=r 2\/§ - - Sx 5.3 E
q.,com = [Sln(ﬂ - _) + SIH(_)] - (COS M= 1)
T 6 6 D,
lercom = &é[— cos(u —S—ﬂ) + cos(S—”)]i £ sin u— 3E l’u
, Vs 6 6 7lo, rLw, 2 (2.15)
- 2\/§ .. T . S
 ond = 7 i, [sm(?) —sin(u + ?)]

~r 2\/§

ld,cond == P ld [COS(/J + ?) - COS(?)]

For AVM-2, similar formulations can be developed to capture the average line
currents on the AC side. The detailed mathematical derivation process is not included
here for simplicity and can be found in [56] and [62].

The accuracy of the reviewed average-value modeling methodologies have been
verified with detailed computer simulations and hardware prototyping systems and
proven to be able to capture the average-value system responses in both steady-state and
under large-disturbances. It is generally reported in the literature that neglecting certain
high-frequency elements may lead to certain degradation of model accuracy compared
with hardware prototypes; however, it can significantly improve the simulation efficiency
of power electronic systems. In the resulting AVM, the dynamics of the rectifier and DC-
link are accurately described using a set of DAEs, which can then be easily utilized for
mathematical implementation of time-domain simulations and other types of stability

analysis.

2.4.2.2 Parametric approach

In parametric model [49], the inputs of the rectifier v, and i, are supposed to

be connected to the outputs of the rectifier v, and i, with an algebraic block separately:
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Vabc = a()vd

_ _ 2.16
Iy Z,B(-)iabc ( :

where a(.) and B(.) are algebraic functions linking the input variables of the
rectifier to the output variables.
In this representation the detailed formulation of @(.) and f(.) are not required

but as they may vary with operating conditions, the functions need to be extracted with
repeated simulations and derived in the form of look-up tables. Parametric approach,
compared with analytical approach, is considered to be more elegant, straightforward and
easy to implement; however, it lacks the ability to support systematic studies and in order
to get an accurate approximation of the algebraic function, a large number of repeated
simulations under a variety of operating conditions are required beforehand. Weighing all

the pros and cons, for this research work, we will focus on the analytical approach.

2.4.3 ESRDC suggested case studies

A series of case studies were suggested by ESRDC in [18] to assess the
performance of the MVDC system under different scenarios. What of interest here is the
set of case studies that require relatively short time scales (from s to ms). They can be
modified and adapted here to simulate the system dynamics, characterize the transient
performance and evaluate the accuracy of the modeling strategy. Some of the
representative case studies that are closely related to the dynamic study performed in this

dissertation can be found as:
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2.4.3.1 Scenario one: Load pick-up

Sudden connection of large load to ship grid such as a large uncontrolled motor or
a pulse load directly connected to the grid, etc. The prime mover initially loaded around
50% and after connecting a large load, a certain percentage of power is added. Study of
dynamics and transients during this process are suggested including deviations from
nominal generator frequencies based on MIL standard 1399 and deviations from nominal

main distribution bus voltage [65].

2.43.2  Scenario two: Load rejection

Study transient caused by sudden loss of large load that is triggered by load

breakers trip.

2.4.3.3  Scenario three: Loss of generator

Study the transient caused by sudden loss of a generator under two cases:
e The remaining generation capacity is larger than connected loads
e The remaining generation capacity is less than the connected loads where

load shedding is required

2.4.3.4 Scenario four: Power restoration to vital load(s)

One of two buses connected to a vital load supplying power is damaged. The
second bus is already at full capacity supplying power to other interconnected loads.
Non-vital loads are shed to preserve enough power for the vital load. Study of transients
during the bus switching event and the estimated time required to restore the power are

suggested.
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Meanwhile, there also exist various case studies that are recommended for
system-level studies include: power balance analysis, fuel consumption analysis, prime
power optimization and reliability/survivability assessment. Of them the reliability
assessment essentially solves the question that under given system topology and
component settings, the proportion of the load that could be maintained following the
event of system failures. As the system failure probability can be described with a
probability distribution, the reliability of the system can also be accessed through

quantitative indices to facilitate the early stage design.

2.5 MVDC Quality of Service (QoS)

In the previous chapters, we mainly focused on the evaluation of dynamic
performance characteristics and the relative modeling strategy design. As a reference, in
this chapter, we will briefly talk about the steady-state operation characteristics of
MVDC SPS. Quality of Service (QoS) is introduced as one of the most important static
criteria for SPS applications. QoS is defined in the form of reliability metric to quantize
the ability of the system to supply power loads and fulfill their power requirements [1,
66]. The definition of the QoS metrics doesn’t take into account survivability events as
battle damage but does take into consideration of equipment failures and the transients
caused by normal system operation.

From the QoS perspective, the ship may be operated under five different modes
including: anchor, shore, cruising, functional, and emergency [67].

e Anchor: Also known as the minimum condition. This is the condition in

which the ship supplies power while the ship is at anchor
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e Shore: refers to the condition where the ship receives all the power from a
shore facility
e Cruising: the ship cruises at a certain cruising speed, with reserved power
for combat system
¢ Functional: the ship is performing certain functions under this condition.
Common functions include: battle, air operation, store ships, repair, and
etc.
e Emergency: ship is powered by the emergency generators/back-up power
storage units with the service generators down
Accordingly, the power loads can be classified as: un-interruptible, short-term
interruptible, long-term interruptible and exempt [1]. Load shedding is required to
achieve QoS under adverse conditions including system failures or battle damages. Via
the load shedding and other coordinated system reconfiguration, power supply to vital
loads that of necessity of the specific operation can be maintained during and after the
disturbances to avoid the QoS failure and by doing so, to enhance the system reliability.
Another criteria used to classify different categories of loads is the priority level.
Priorities are determined based on the mode the ship is operating under. Commonly there
are three types of priorities defined for SPS [68]:
1. Non-vital: load that can be immediately disconnected without adversely effecting ship
operations.
2. Semi-vital: loads that are important but still can be shut down.
3. Vital: loads that affect the survivability of the ship which require continuous power

supply and are not affected by the load shedding schemes.
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These three categories of load priorities are being actively used in the current load
shedding system of SPS. Other than the fixed priority levels commonly found in
terrestrial power system, on board loads tend to change priorities depending the current
operating conditions or the mission requirements.

A simple demonstration of priority level of loads under different ship operation

mode is shown in the Table 2.2 [69].

Table 2.2 Example of Load priorities under different operation mode

Ship operation mode
Load Type Cruise Battle
Service loads Semi-vital Non-vital
Propulsion loads Vital Semi-vital
Weapon loads Non-vital Vital

2.6 Dynamic performance management for SPS

For MVDC system, stability problems are mainly associated with control
functions and passive filter specifications [17]. Therefore in the existing literatures most
of the researchers are focusing on the component level analysis and control designs.
Relying on passive methods, it is expected to achieve the optimization of the dynamics of
certain components or sub-areas without considering the over-all system-level responses.
While management techniques for stability of conversional terrestrial power system have
been well developed, for SPS very limited effort has been made towards the design of
system-level dynamic management. Based on [25], the general requirement is that under
normal conditions, the underlying power management framework could (re-)configure

the system to provide sufficient power to all loads while preserve sufficient operation
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margins to address possible load changes due to sudden events like pulse loads

initialization and large motor starting.

2.6.1 Conventional DC Micro-grid control techniques

To damp the energy unbalance and to keep the oscillations of the main bus
voltages within the safe limits or to eliminate it, in [70], a variety of solutions are
proposed including the passive hardware structure modification approach including
adding resistors, filters, energy storage elements and strategies that replying on control
designs including linear/nonlinear controllers. The advantages and disadvantages are
analyzed here respectively:

e Adding resistors: This is the most direct method to use extra resistors to
dissipate energy in order to damp the oscillations; however, the
contribution is proven to be insufficient by itself to achieve a stable
operating point.

e Adding filters: stable operation can also be achieved by adding
capacitance or reducing inductance. The latter is usually impractical in
applications while the former results in the addition of large amount of
capacitance. However, this method is greatly constrained when it comes to
the shipboard power system where the physical size and weight of
capacitance matters. Another concern with the employment of expensive
large capacitors is that they have relatively low reliability for both short
time operation and long term maintenance.

e Adding energy storage device: adding bulk energy storage unit like

batteries, ultra-capacitors that acts as an extension to the previous
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approaches and can help damp the oscillations. However, for a DC
network, this solution is only considered effective when the storage
devices to work effectively, they have to be connected directly to the main
DC bus without intermediate power converter interfaces. Direct
connections would raise issues like voltage equalizing and potentially
compromise the reliability and safety of the system. The storage devices
are also expensive to install and operate with.

Linear controller: linear controller is considered as the simplest strategy to
regulate DC voltage at the main bus. Those PID type controller is
designed to control the duty cycle of the interface converter based on the
state-space system representations in order to achieve the optimal voltage
regulation. In contrast with previous passive methods, linear controllers
have advantages like simplicity and effectiveness, but it has been indicated
that linear controllers cannot guarantee global stability of the desired

equilibrium point.

While most control designs reviewed here have been examined against simulation

and hardware prototyping and proven to be effective, they are still insufficient for a

system-level design due reason including: 1) the algorithms are pre-specified and can

only handle specific situations. They lack the ability to communicate and coordinate for

system-wide management; 2) most of the designs are based on the state space

representation of the system which yields the solution in the form of "domain attraction",

i.e. the safe region of operation. They do not provide direct information with regards to

the detailed performance evaluation. Time-domain analysis is still required to be
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repeatedly performed in order to examine the control design based on the metrics in

Table 2.1.

2.6.2 Reconfiguration and restoration for SPS

Reconfiguration process for shipboard power system reroutes the electric power
in order to achieve various objectives including maximizing service restoration,
minimizing power loss and optimizing power dispatch. Reconfiguration has also been
proven to be an effective solution on the reliable operation of power system at the post-
disturbance stage [71]. It is no longer only an emergency solution to isolate the areas
affected by contingency and to solve the post-disturbance system topology energy
distribution scheme, but also an integrated global solution that can be utilized to optimize
the system resources distribution and the electrical plant performance [72, 73]. However,
reconfiguration unavoidably changes the original topology of the system with the
switching on and off of circuit breakers, bus transfers and low voltage protective devices
and these changes may cause the system in transition towards instability as the system
dynamics are trigged [74].

Previous research conducted in the reconfiguration area mainly focuses on the
static system performance with regards to certain optimization functions [72, 73, 75].
There is yet no salient research effort on the dynamic behavior of SPS under disturbance
or operating status change. In most of the research work based on static analysis, it is just
assumed that the system can reach a post-disturbance stable operating equilibrium and the
reconfiguration process will not affect the safety/security operation margin [67, 73].
However, for SPS, this is not necessarily true. Some other techniques have been proposed

to increase the voltage stability margin by taking into consideration of reconfigurable
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reactive power control planning in the post-contingency stage [76-79]. However, those
techniques are generally developed for terrestrial system and ordinary mathematical
expediencies like "slack bus" or "infinite bus" are assumed to be valid in the formulation
of power flow calculations [79]. In some of those approaches, the installation locations of
costs of reactive power adjustment devices are considered as an important factor and the
control objective is normally set as long-term voltage stability [76-78]. Those
assumptions and design considerations are not always valid when it comes to naval SPS.
Reconfiguration approach designed specifically for MVDC zonal loads can be found in
[80, 81]; however, the objectives of those approaches fall in the category of static
performance optimization including power loss minimization, optimal power dispatch
and fuel economization. The authors in [82] provided some valuable insight into the SPS
dynamic reconfiguration with an analytical basis for evaluation of stability margin using
Lyapunov's energy functions, but it has not present a detailed control framework to work
with this approach. Therefore a novel detailed dynamic analysis of the post-disturbance
system behavior and the corresponding reconfiguration process that specially targets at

SPS needs to be carefully invested for reliability enhancement.

2.6.3 Load shedding for SPS

When a power system is working in stable status at normal frequency, the total
mechanical power input from the turbines to the synchronous machines should be equal
to the total power consumption of all the running loads plus the transmission losses.
Therefore, the balance between power supplied by the generator's prime mover, in our
case the gas turbine, and the power consumed by loads plays an important role in

maintaining the normal system frequency and overall stability. In case of mild overload
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or gradual load increase, the speed governor of the gas turbine senses the power demand
change, then increases the rotor speed to increase the power supply accordingly.
However, if all the generators are already at full capacity and the spinning reserve is zero,
it is necessary to automatically and rapidly disconnect a portion of the load equal to or
greater than the generation deficiency to achieve power balance and maintain system
stability.

In other cases which include sudden or large changes like loss of generator or
pulse-load startup, the generator frequency would decline rapidly which puts the system
at risk (a typical protective low-speed trip on gas turbine is set at 96% of the nominal
system frequency). Under this circumstance, proper actions to disconnect load need to be
taken immediately as well to mitigate the effect and drive system away from collapse and
hazardous states. This is called Load Shedding. Load shedding is closely related to the
QoS study that is previously mentioned in Section 2.5 as for the low-priority loads are
always expected to be shed first while high-priority loads need to get continuous
electrical power supply.

Based on the discussion above, an automatic and efficient load shedding system is
necessary for shipboard power system as the disturbance usually happens too fast for the
human operator to react. The load shedding system is responsible to generate a system
level scheme which specifies the disconnection of selected loads from the main
distribution network in a fast and reliable manner to optimize the overall system
performance especially during the transient phase.

Based on the existing literature, current available onboard load shedding practices
are normally achieved using the following approaches [83]:
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2.6.3.1  Circuit breaker based/ Under-frequency/Under-voltage load shedding

Those approaches are well developed for large utility system and have been
widely employed to handle load shedding. Circuit breaker based approach is the basic
type of load shedding. For this scheme, the circuit breaker interdependencies are pre-
arranged and the sequence of circuit-breaker tripping is hardwired. Once the load
shedding sequence is triggered, loads will be shed instantaneously based on the present
sequence. This scheme is considered to be the most straightforward and efficient
approach. However, it also has a number of inherent drawbacks such as [83]: in most of
the scenarios, more loads are shed than required as the scheme only has one-stage of
operation based on the worst scenario, as the circuit-breaker interdependencies are
hardwired it is also expensive to modify the design for different applications. For Under-
frequency/voltage load shedding, the guideline is to reduce fixed amount of load based on
a system frequency/voltage levels. Once the system frequency/voltage set-point is
reached, the corresponding relay trips one or more load breakers at a time to reduce the
load consumption. This process is performed within programming logic controllers
(PLCs) and will be repeated until enough loads are tripped and the frequency deficiency
caused by the power imbalance is recovered. A typical example of under-frequency load
shedding scheme is that: for every 1% frequency reduction, shed 10% of the total load.
Compared with basic circuit-breaker based scheme, under-frequency replay based load
shedding is more flexible and adaptive for different operation scenarios with the
consideration of the global system configuration and the utilization of the knowledge of
load priority levels; however, as the scheme comes in the form of a set of programmed
relay settings, its drawbacks are also quite obvious: highly trial and error based, slow
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response time, inaccurate load shedding, lack of knowledge to the system-wide working

conditions, dynamics and etc.

2.6.3.2 Intelligent automatic load shedding [68]

An intelligent real-time load shedding scheme for SPS is proposed in [68]. In
contrast with the conventional load shedding schemes, it is more “intelligent” as it can
formulate the load priority levels based on various operating conditions and the
undergoing missions. The system critical natures of loads including inrush currents,
harmonics injection, power factors, restoration time and cost are also taken into
consideration of the decision making process of load shedding. A dynamic database that
updated based on system state information include mission, load info, connectivity,
switch status is utilized by the load prioritization module which prioritizes the load. This
generated priority list is then sent to the “expert control actions module” which decides
the loads to be shed based on the static objective like least number of control actions
taken, maximizing system benefits and minimum load curtailment. This approach is
essentially a multi-objective optimization problem.

Another SPS load shedding scheme can be found as in [84]. Similar to the
previous scheme, the system information is gathered within a central database including
the operating conditions like power consumptions, current drawn, harmonics and etc.
Based on the collected information, a dynamic priority list is generated and sent for
execution.

Intelligent dynamic load shedding is a great improvement over the fixed schemes.
Although no effort has been made so far to perform the load shedding for the dynamic

performance optimization, it is considered as a promising strategy.
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2.6.4 Other management techniques

Other voltage regulation and voltage stability protection methods have been
proposed for terrestrial power system and SPS [85-87]. They aim at detecting potential
instability or safety degradation of the power system and perform corresponding
management actions to mitigate the effects. The stability protection schemes are based on
offline-calculation and essential rule-based. A rule-based management scheme monitors
bus voltage measurements and their rates of change to trigger the control actions. It
heavily relies on the off-line calculations therefore lacks flexibility. Besides that, the
majority of traditional voltage management strategies only consider a single control
approach, such as generator voltage settings, transformer tap settings, capacitor switching
and load shedding separately. The discrete nature of control actions are only considered
in very few literature [88, 89]. In [90-92], automatic voltage regulators (AVRs), power
system stabilizers (PSSs) and speed governors have also been considered to be used for
voltage stability enhancement. Those controllers fall in the category of uncoordinated
single-input and single-output controllers and the control actions are determined solely
based on the local measurement of system states. No extra data transmission is required.
This approach has been approved to be effective for local control in most cases; however,
it is also highly conservative as no interconnections are considered. At the same time,
even those control components could be very well-tuned; there is no guarantee that they
can handle any possible disturbances.

For a highly-nonlinear and complex system like SPS, design approaches that
based on pre-specified plans are inflexible and not adapt well to constantly varying
operating conditions [93].
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2.7 Multi-objective optimization

Multi-objective optimization (MOOQO) involves the solving more than one objective
function simultaneously in decision-making and design situations. A survey of common
multi-objective optimization methods for engineering can be found in [94, 95] and

mainly in book [96]. A general multi-objective optimization problem can be defined as:

Minimize F(x)=[F(x),F,(x),...F, (x)] (2.17)
subject to:
h(x)=0i=12,..m (2.18)
and
g,(x)<0j=12,.n (2.19)

where & indicates the total number of objective functions. 4,(x) and g,(x) are used to

represent the existing constraints for the optimization problem.
Objectives considered in the multi-objective optimization problem, i.e.

F (x),F,(x),...F,(x) are often conflicting with each other, therefore the solution needs to

take into consideration of the scaling of each objective based on design preferences while
satisfying all of the constraints. A common example for multi-objective optimization for
SPS is to maximizing the cruise speed while minimizing the fuel consumption and
minimizing the power losses within the system. As the formulation of this type of
optimization problem depends on varying operating conditions and involves system-wide
consideration of relative constraints, it has caused difficulties for conventional single-

objective control designs.
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As MOO inherently contains multiple different mathematical objectives that may
have different units or different orders of magnitude, in order to accurately compare the
priorities of those objectives and make decisions based on a global basis, it is critical that
objectives involved in a MOOQO problem to be transformed into unitless forms and possess

similar orders of magnitudes [96].

2.8 Model predictive control

With the advance in control and mathematical programming techniques, Model
Predictive Control (MPC) technique has made the design of an automated and efficient
performance management framework for power system possible. Since the first
introduction during the 60s of the last century, MPC has become more and more popular
with both control theorists and control practitioners. The interest of applying MPC in
industrial practice is constantly driven by the fact that today’s system is more complex
than ever, therefore it is more difficult to maintain the system in admissible operating
region with tight performance specifications while satisfying a variety of regulations and
constraints due to environmental, productivity and safety considerations. MPC, also
referred to as moving horizon control or receding horizon control, has proven to be a
well-suited approach to solve this category of problems.

In general case, when used in electrical power system, MPC refers to a class of
algorithm that predict a sequence of future system states based a manipulated control
input adjustment, dynamic model of the system, and the current system states, then
choose the control input that result in the optimized future system states. The use of MPC
to achieve automatic self-managing has attracted a lot of interests in both academia and

the power industry. A detailed review and formulation of MPC theory can be found in
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[26, 97, 98]. MPC, as an effective control technique, has been used in a wide range of
industrial applications. MPC is suitable for circumstances where:

e Complex processes that are difficult to control with standard PID

algorithm
e Multiple inputs with strong impacts on the system state evolution
e Flexible objective and time-varying constraints
It can be seen that MPC has provided an optimal solution for multi-objective

optimization problem as mentioned in the previous section. The general idea behind MPC

is shown in Figure 2.10.
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Figure 2.10  General principle of MPC [99]
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A model predicative controller uses the system model to predict the future system

trajectories (dotted lines) over a prediction horizon ¢, based on the current system

operating point x, which can be measured at time ¢, and an accurate numerical system

model [99].Based on the estimated future system states, an optimization solver

determines the control over the control horizon 7, (7, <¢,) such that a predetermined

performance objective function is optimized in over the prediction horizon. Assumed that

there is not model mismatch and the optimization problem can be solved, then the
derived control input can be applied at time ¢, . The prediction cost function J(x,u) can
be referred to the deviation of each predicted trajectory from the reference system

trajectory (dashed line).This process is repeated with the control and prediction horizon

moving forward. The problem can be formulated in the form of:

min J(x,u) (2.20)
subjectto u €U , and x € X where U and X indicate the set of feasible input
values and system states.
The key advantages of such a framework can be summarized as [93]:

e A variety of explicit performance control objectives as well as constraints
of inputs and states can be combined and considered simultaneously
within the same framework

e The management structure and the control solution is highly generic and
abstracted, therefore it can be applied to a wide range of system structures,

specifications, operating conditions and constraints
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e Capability of handling the control design for non-linear and complex
system models accurately and efficiently

There also exist a series of concerns about MPC techniques, mainly on the
stability of the control scheme. As being pointed out the previous discussion, the
optimization is made based on the assumption that the numerical system model used for
prediction is always accurate and the predicted system states that derived from “open-
loop” iterations. However, in general practice, the estimated open-loop system
performance may not completely match with the corresponding close-loop response,
therefore the stability of the MPC scheme as well as the model/plant mismatch need to be
carefully evaluated especially when the prediction/control horizons are relatively long.

Another concern about MPC is the performance of the calculation. Ideally, one
would want to extend the prediction horizon into infinite but this is impractical due to the
fact that the open-loop optimal control problem cannot be solved sufficiently fast. From
the computation effort point of view, short horizons are more desirable although long
horizons are desired with from the performance point of view. The efficiency of the
strategy much be taken in consideration when formulating the optimization problem.

More in-depth analysis of MPC design concept and relative problem formulation

process can be found in Chapter IV.

2.9 Contributions

Compared with existing literature, the main contributions of this work include:
Overall, a novel dynamic performance management framework that developed
specifically for MVDC shipboard power system is proposed. With the utilization of

average-modeling techniques and model-based predictive control strategies, this
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management framework is capable of performing effective and efficient dynamic
management to optimize the system behavior during the transient phase caused by
disturbances and other dynamic events; therefore enhancing the overall stability and
reliability of the MVDC system. The detailed contributions included in this work can be
listed as:

Contribution towards power system modeling and simulation:

e In order to develop an accurate baseline numerical model to facilitate the
proposed dynamic management framework design, the latest MVDC
shipboard power system architecture and its notional functional
breakdowns are reviewed in details with their exclusive modeling
requirements respectively.

e A highly simplified modeling strategy for MVDC SPS is developed in the
form of Differential Algebraic Equations (DAEs) to evaluate the system-
level dynamics. Compared with existing techniques and modeling
approaches, it is more accurate and time efficient for the purpose of
system level studies

e The presented modeling approach can be used as a convenient simulation
tool for other research and application designs on shipboard DC power
systems. The same modeling principle can be expanded for studies of
short-term stability, governor and load control design, or even long term
dynamics by including the appropriate level of details of the

corresponding components.
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Contribution towards model-based performance management and system

optimization:

e A dynamic performance management system which targets at various
classes of optimization problems is proposed in this dissertation.
Compared with human operators and rule-based/strategy-based
management system. It is able to automatically handle system dynamic
responses triggered by faults, damages or other disturbances during the
transient phase and by doing so, enhancing the over-all reliability of the
MVDC system.

e The proposed framework has the capability of including a flexible multi-
objective performance criteria, so compared with conventional dynamic
control solutions that are fixed for certain specific objectives and missions,
it can be flexibly used to manage the global system dynamics subjected to
varying operating conditions, optimization criteria and real-time
constraints

e This framework can also be integrated with other power management
schemes, e.g. static system performance manager including fuel
consumption optimization and QoS maintaining for the overall system
reliability operation.

Contribution towards tool development/Software application design:

e A component based software environment has been designed for effective

and automated implementation of the proposed management system
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including system schematic design and control solution synthesis for SPS
applications

e The proposed simulation and modeling environment is proven to be
capable of cooperating with other power system simulators/hardware
prototype benchmarks to make this tool flexible for different applications

and different types of analysis.
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CHAPTER III

SPS MODEL FORMULATION

3.1 Introduction

In this section, the modeling strategies for every function module as listed and
reviewed in Chapter II are illustrated respectively. As a general modeling principle,
power systems can be described by a set of parameter-dependent differential algebraic

equations (DAEs) in the form of [100]:

x(t) = f (&, x(2), y(2),u)

(3.1)
0=g(t,x(2), y(t),u)

where x is the vector of continuous differential state variables for which the derivatives

are present (in the form of x ), such as generator rotor angles and speed. y is the vector

of algebraic variables like voltage magnitude and phase angles for which no derivatives

are present, and u denotes the vector of discrete or continuous control input variables. x
and the function / determine the differential attributes of the system while y and g
determine the algebraic attributes. The term algebraic refers free of derivation and can be
seen as a general representation of constraints applied to the found solution of f . While

most power systems include SPS are non-linear, from the stability perspective, they are
essentially time-invariant as the system’s properties vary with the system states, not the

time. In this case, the system representation can be simplified in the form of:
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x(t) = f (x(2), (), u)

(3.2)
0= g(x(1), y(1),u)
In this chapter, the detailed MVDC system model will be derived and represented

in the form of (3.1) to facilitate the analysis and control design in the following chapters.

3.2 System model formulation

Based on the review with regards to the modeling strategy in Chapter II, to study
the influence of control techniques on the dynamics of shipboard power system, a scaled
but representative model needs to be developed. This model should be abstracted and
different than the conventional simulation-oriented power system model. At the same
time, it needs to capture the dynamic behavior accurately to provide valuable insight into

the transient phenomenon for the control framework design.

3.2.1 Power generation modules

Based on the previous discussion, an onboard generator module has essential
elements including a prime mover (gas turbine), a field exciter, a synchronous machine
and a three-phase diode rectifier.

While the prime mover and exciter play important roles on the synchronous
machine operation, this process tend to have significantly larger time constants compared
with the frequency range of interest. In another word, the turbine control units and the
field excitation control loops are much slower compared with the time frame of interest.
For example, the gas turbines, represented in the form of a set of transfer functions, have
been reported to have an average of 8-10 seconds time constant due to the ignition delay
and mechanical constant [21, 101]. The same situation applies to the excitation control

loop due to the generator inertia. In this case, the full dynamics of those components do
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not play an important role when it comes to the performance evaluation from the system-
level perspective. Therefore, in order to simplify the simulations the corresponding
excitation system and gas turbine transfer functions are modeled by means of constant
values. Notice here the assumption is only suitable for the purpose of this particular
design and frequency range. It may not be valid for other applications.

Based on the existing AVM techniques reviewed in Chapter II, the conventional
dynamic average modeling technique can be modified and extended for the development
of a synchronous machine fed load-commutated converter system. To start the
discussion, it is good to first review the basic representation of the averaged DC voltage

output:

2

[ 10 v M+ L, -] (33)

v, ==,
T3

With the synchronous machine as the voltage source, v,,, v,, and v, canno

ag 2
longer be approximated as an ideal three-phase balanced power source. Instead, they need
to be expressed based on the dynamic relationship of the corresponding machine fluxes
and currents. Notice that all the state variables that are related the synchronous machine
will be represented in the classic d-q rotor reference frame which can be converted from

three-phase domain using Park’s Transformation (PT) as:

fqaro = Kr (@) fabc (3.4)
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where ¢ denotes the instantaneous rotor displacement angle and / denotes
quantities like voltage, current or flux linkages. The transformation matrix K, is defined

as:
cos¢p cos(¢—2x/3) cos(¢+27/3)

K = % sing sin(¢p—27/3) sin(¢p+27/3) (3.5)
1/2 1/2 1/2

Similarly, to convert variables d-q frame back to three-phase domain, the Inverse

Park Transformation (IPT) can be defined as:

fabc = Kr_l (¢) : fqdo (36)
cos ¢ —sing 1
K '=|cos(¢—27/3) —sin(p—27/3) 1 (3.7)

cos(p+2x/3) —sin(p+27/3) 1
Particularly for this work, as the neutral connection is not presented, it can be
assumed that f; is always zero and can thus be neglected.

To continue the analytical derivation, the detailed synchronous machine (SM)
dynamic model in the form of DAE equations is necessary to determine the ever-
changing stator outputs. A standard dynamic SM model [13, 102] is used here. In the
subsequent development, the basic definitions and parameters in Table 3.1 are defined for

the SM model.
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Table 3.1  Parameters for the SM model (in p.u.)

. d-axis damper . . :
Stator resistance: r, . P Field resistance: r, Load torque: 7,
S resistance: 7, : (N.m)
d-axis d Field windin _
Stator leakage axis damper . & ) Electromagnetic
. leakage inductance: | leakage inductance:
inductance: L torque: 7, (N.m)
’ L, Lfd
Direct-axis . Machine rotor
. g-axis damper Base speed: w,
magnetizing . ) g angular speed: o,
. ] resistance: 7; (rad/s) '
inductance: L, 7 (rad/s)
uadrature-axis -axis damper
Q e Jraxis p . | Rotor (Load) angle: )
magnetizing leakage inductance: d Inertia constant: H
inductance: L, L, $ (rad)

To start with, within the stator the basic representation of the relationship among
flux linkage (4 ), stator voltage (u ) and the stator current flowing (i) in the reference
frame can be written as:

For stator voltage:

vy =niy—w A +d 2, [dt

(3.8)
V=1l + A, +dA, fdt

for rotor voltage:

V=Tl +d Ay, [dl
Vig =Tighg +d A, [dt (3.9)
Vy, = hoh, +dA, [dt

where it is assumed that the damper windings are shot circuited so v, = v, =0

The relationships between d-axis and g-axis stator/rotor flux linkages and

currents:
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/Id = LSZ; + ;{’md

. (3.10)
A, =Li, + 4,

/11(1 :leild +ﬂ’md
/11(] =L1qi1q+ﬂmq (3.11)

Ay =Ly

Gl T Ana

The mutual flux linkages can be described as:

ﬂ’md = Lmd(i; +1iy, +ifd)

v (3.12)
/lmq =Lmq(lq +llq)

The mechanical part of the generator can be represented as:

b=w — o,
o, = (T, ~T,)o, |2H (3.13)
T, = il = A

With the assumptions made in (2.4) and (2.6), the second part of (3.3) can be

rewritten in a similar manner. We can define that:

7 0

. T . 27 — -

Lype (E) = 0 and i, (T) =| (i, +Aiy) (3.14)
; Lo

Therefore, the remaining question is how to solve the first half of the equation
with the given boundary condition. The detailed derivation is demonstrated as follow.

Neglect the stator resistance, the stator voltages and stator flux linkages can be

represented as:
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v A, /dt

ag

v, |=|A,/dt (3.15)

g

v A./dt

g

Substituting (3.15) into the first half of (3.3) yields

V=20, (4~ A)

T

27
3 45 (3.16)
3

So now the problem becomes: finding the value of the expression 4, — A4, at time

) T 27
instant — and —.
3 3

Attime ¢ = % , apply IPT and we could derive that:

. 1 i \/?_a T

%(E)—E d(§)+7ﬂ’q(§) 517
Ty (&

ﬂ’c(g)_ d(3)

Thus, 4, (g) -4 (g) can be represented as:

gzq & (3.18)

NN
ﬂ%(?)—/@(g)—z d(3)+ 3

Apply PT, the stator current in the rotor frame can also be evaluated based on the

three phase current variable as shown in (3.14):

(3.19)

5
3d

Y Ny
Ly (E) ="l (3) =

Similarly at time ¢ = ZT” , apply IPT and the flux linkage can be represented as:
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2z 2_7z
ﬂ@(?)—ﬂd( 3)

(3.20)
2. 1, 2z B, 2«
A(—)=—4,(—)+— 1 (—
6(3) > d(3) > 4(3)
Thus,
27 2z, 3. 2z 3, 2z
—)-A(—)==A4,(F)——1 (— 3.21
WG =2 (G = S AT 45D (3:21)
For the stator current, we can have:
i 27[ =3 TN T 27[ \/5 - -
() ==, + AL )i (—) =—(i; + Aiy) (3.22)
3 3 3
-
with @, @
After considerable mathematical manipulation, the solution to (3.3) can be
expressed as:
_ 33 L3 _
Vd :__a)r(Lmq .llq)__[a)r(l’s +Lmq)+Lcwg:|ld -
d d (3.23)
) 1 3 di, '
"L +—L +=L )+2L]—<
L, Gl t gttt T2L 17,

4

From the discussion, it can be observed that if i and i; are considered known,
and the detailed form of j,, and @, can be derived, then the differential equation (3.23)
could be solved. In order to solve the value of i, and @, which is the directly generated

from the generator DAE set. Combine the aforementioned equations, the differential and

algebraic variables can be determined respectively as:
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xz[ﬂ’fd’ﬂ‘ld’ﬂ‘lq’a)r’¢]

S (3.24)
y=[ﬂ’d’ﬂ’q7lfd7lld’llq]
With / as:
X = @, -(—rfd A +vfd)
x2 = a)g .(_rld .y4)
X, =0, (-1, s) (3.25)
x, =[T,, _()ﬁi; _YZi;)]wg/zH
X5 =X, -0,
and & as

X, :Lfdy3+Lmd(i;+y4+y3)

x,=L,y,+L @, +y,+¥,)

X, =L1qy5+Lmq(i;+y5) (3.26)
=Ly + L, (0 + Y, + ;)

B2 =in;+Lmq(i;+y5)

This ODE set can be solved over a small time span [¢ t +¢,]with the

current > ” current

latest system state variables and the current input variables including i;,i;,v,,and 7, .

The output from the ODE include the rotor angular speed @, and the rotor g-axis current

i), - This process can be implemented in Matlab using:

[7,x,,,]1=o0de23((@ DAE, tspan, x,, DAE _options) (3.27)
The terminal voltage can then be derived based on the output of this DAE.

Considering the voltage drop caused by the stator resistor, the final differential

equation can be derived as:
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v, = 3*/_ o, (L, ‘lq)—i[a)r(Ls +L,)+ Lo, |i, = 2ri, -
d _ (3.28)
(2L +1Lmq 21 yrar
o, 2 2 dt
Notice that in (3.28), if we assume that £, , =-®.L, i,

L.=w0(L+L,)+Lo,, and L,

c g

L,,)+2L., then (3.28) can be
o

rewritten in a more simplified form as:

(3.29)

_ 33 ;i
t

Vd = equv_(_L +2r)ld c
T

Similar forms of numerical models describing the characteristics of a machine fed
rectifier system can be found in [57-59]. The model proposed in the existing literature is

formulated using the form of sub-transient reactance X to represent the machine

dynamics. This approximation could work as the commonly assumed “sub-transient
dynamics” include the dynamic phenomenon of interest with regards to the system level
study. However, the sub-transient reactance representation is limited to a specific stage of
the system transient responses. Therefore the proposed modeling strategy of the LCC
system provides a more generic representation that is desirable to capture the system
states during every stage of the transient period. It can be seen as an extension to the
existing modeling formulation, but with the improvement on capturing the complete
transient machine dynamics during the time range of interest. Meanwhile, the calculation
of the proposed approach is very straightforward and no additional mathematical
manipulation or variable conversion is necessary. Considering the DC link dynamics

which can be described as:
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v,=R,.i,+L,-di/dt+v,, (3.30)
Combine (3.28) with (3.30), we can now have the complete representation of the
power generation module as:
33 3 -
dzj 7 Eequv - vload - (; Lcr + 27:; + Rdc)ld

= 3.31
dt L,+L, ( )

One interesting factor of this representation is that it is in a very similar form
compared with (2.9), where the ideal three-phase voltage magnitude E is replaced by the

equivalent stator flux linkages E

. and the constant phase frequency , is replaced by
the rotor angular speed of the SM w, . This representation is denoted as the “dynamic

model.”

Now, the dynamic DC-link model can be used to approximate the behavior of the
load-commutated synchronous machine systems. The concept of the proposed dynamic
model can be represented in Figure 3.1. An equivalent circuit representation of Equation

(3.29) is shown in Figure 3.2.
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Required Torque T,

:

A, A i
Three-phase i N Diode b, DC
sync_hronous ma:::hme « Rectifier [ network
with Gas turbine i 1 v,
Electric Field Voltage v ,,
Power e
DC Reference
Voltage . .
, Field Exciter |« P
ower {approximated as a ermina
Reference ’ constant) Voltage

Figure 3.1  Concept diagram of the proposed average value model

Similar to (2.14), the commutation angle and the stator currents on the AC side

can be derived from (3.29) as:

w=arccos(1-2L i, / x/gEeqw) (3.32)
and the AC side current components can be derived as
- 2B 1 3 . 4r
q,com = 7 ld [a)r (Ls + E Lmq + ELmd ) Sln(:u - T) +
E
Lo, sin(4—ﬂ)] 3 +‘”1 (cos i1 —1)
3 4 Lcr — += Lcl
o, 2
L oom = Efi[—a}r (2L, + leq —iLmd)cos(,u —4—7[) +
471' 3 Eequv . 3Eequv 1
Lo, COS(T)] 1 sin yy ————uu
T L%, rlL,o, 2
o, 2
- 2\/g - . 2 . 2
 ond = 7 ilo (L, + Lmq ) s1n(T) - Lca)g sin(u + T)]

-, 23+

_ 2r 27
Y cond = _7 I [a)r (Ls + Lmq ) COS(ﬂ + T) - Lca)g COS(T)]
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The calculation of the proposed model involves the simulation of a standard SM
which adds the complexity and requires more computational resources to solve. At this
point, in some of the previous works, further simplification was made so that the transient
saliency is neglected; instead (2.9) is used to model the SM dynamics with the
assumption that the SM stays in its steady-state operation status during the transient
phase. This approach is referred to the “steady state model.” With this approximation, a
more reduced model can be derived as shown in Figure 3.3 which contains only the

steady-state characteristics of the average model and does not require a SM model.

— YTYTYN AN

v
I L,+L, chr +2r +R,

3\/§Eequv C) —T)
P Cd__ load

Nall /

Figure 3.2 The equivalent representation of the dynamic model

Y Y Y AN
L,+2L, 1o +R,
3 f "

+
33E () i
T Cdc load

Figure 3.3  The equivalent representation of the steady-state model with transient
neglected

Yy
+
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However, in our case, this approximation may not stand true as the machine
dynamics could potentially impact the overall system dynamic performance during the
short period of transient phase. Therefore, in the following discussion our main focus will
be on the evaluation of the dynamic model where SM dynamic variables are kept, while
using the steady state model as a reference to compare the system responses generated

from different modeling approaches.

3.2.2 Power distribution modules

As the SPS is closely coupled, the line reactances are considered to be small and

therefore are combined with the filters. The distribution network is formulated so that the

currents of interconnected branches on each bus should satisfy Zik =0 and
k=1

Vi=V,=V,.

3.2.3  Switching gears and power conversion modules

For the switching gears, the status of components connecting or disconnecting to
the distribution network is simply represented by a binary variable: 0 indicates
disconnection while 1 indicates connection. For power conversion modules, as the
interface converters are properly integrated with their interconnected components, the
detailed high-frequency dynamics contained within power electronics converters

(inverters) are not considered here separately.
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3.2.4 Load modules
3.24.1 Resistive loads

Resistive loads are assumed to be connected the DC bus directly and then can
simply be represented as a constant resistor. A typical resistive power load can be found

in Figure 3.4.

Vdc § RL

Figure 3.4 A typical representation of resistive load based on CPL assumption

3.2.4.2 Induction motor loads/CPLs

iIaad
I\N\l YY) >
N R, Lt
P *
Vdc V:Ioad —_ <J>
. Cf I/:’c*a'd
(a) .
lIoEd
+

~

P
de <~L> V_dc

(b)
Figure 3.5  The equivalent average-value model of induction motor drives with filter
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A typical representation of induction motor load with capacitive filter is shown in
Figure 3.5(a) while a typical CPL load is shown in Figure 3.5(b). Without the
consideration of losses in the interface inverter and the rotating machine itself, the
induction motor can be seen as an ideal controller current source where the current is

assumed to be equal to the instant power consumption P divided by the terminal voltage

4

O

... Typically for induction motors, the value of P is setas P* where P" =@, T", and

T", represents the desired toque required by the mechanical loads.

3.2.4.3 Pulse loads

Pulse load refers to the kind of loads that draw a very high, short time current in
an intermittent pattern [18]. A generic pulse load model as shown in Figure 3.6 is used
here. From the system perspective, the behavior of pulse load can be seen as a parallel
combination of two resistive elements, one with a very large value and the other with

negligible value, and a switch is used to choose between the two resistors [103].

Figure 3.6 A generic representation of pulse load [103]
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3.2.5 System DAE formulation

Based on the previous discussion, the individual component models can be
combined and form a basic single-machine system model which contains a power
generator as the power source, a notional uncontrolled diode rectifier, and a single

induction motor load with filters which can be shown as in Figure 3.7.

+ Lf Rf iy |+ R L, load | T

P*
<E Cf:: Vdc Ce =V d V_

load

Figure 3.7  Average-value equivalent representation of a single-generator system

The following DAE can be formulated to describe the system states:

dv,. 1, di, 1

— = =—(, =1 —~=—(E-R,i, -
dl C/, ( g load) dt Lf ( fld vbus)

d 1 P di,, 1 (339
vl ad . load __ .

e - —_— =,  — Ri -V
dt Ce (lload v/oad ) dt Le ( bus e"load luad)

With the consideration of the general system structure demonstrated in Figure 2.3
and the individual component models developed in this Chapter, an extended system that
includes multiple power sources and multiple loads can be developed as shown in Figure
3.8 by using the same modeling principle that has been used for the single-machine
system. For power generation, two generators are used to supply power to the power grid

and they are denoted as "G1" and "G2". To closely relate the system representation to the
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baseline MVDC model, it is assumed that generator "G1" is acting as the main generator

and "G2" is acting as the auxiliary generator. For the power loads, Load 1 and 2 are

typical resistive loads and indicated as "L1" and "L2". Load 3 is a pulse load which is

denoted as "L3". Load 4 and Load 5 are two propulsion loads denoted as "L4" and "L5".

Combine all of the filter capacitors on the generator side as a total capacitor denoted as

C,, -The system state model can then be summarized and represented as:

On the generator side:

1714 | >
— = I, ->1,.
dl‘ Cg/ (; gk ; Lj)
dl 1
gk k
:_(Ee uv_I’kR’k_V) szl’z
dt Lgk q 8 8
On the load side:

For induction loads:

dv,. P.

_szi(]b__f) Vji=4,5
a C, 7V,

dl, _ 1

= (V=Ry,1,=V,) Vi=4,5

dt L

Li

For resistive and pulse loads:

(3.35)

(3.36)

(3.37)

The proposed DAEs can be combined with the formulations of (3.29) to produce

the dynamic MVDC system model and with (2.7) to formulate the steady-state MVDC

system model. As the proposed model only provides an abstracted concept for over-all
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system formulation, it needs to be combined with detailed system specifications and

simulation settings to form a "complete" mathematical representation of the actual

system.

Gl
] E! R, L I i A {>L1
eguv gl gl gl
I R,
Cg-f ILZ LZ
AV D
RLZ

g2 22 g2

C
i Ry,
L4
I L
L4 Rfl f1 ||
I
Ch
L5
W
I L
Ls Rfl 2 “
CLZ

7

bus

Figure 3.8  Average-value model of the multi-machine DC system

3.3 Model implementation and validation

3.3.1 System specifications

To start with, all the relative system parameters are converted to per-unit (p.u.)
quantities. For the experimenting purpose, the following p.u. parameters are used based

on the specification of MVDC IEEE standard [25]: V, ., = 5000V, S,  =47MVA, and

=0.53Q2.

Z =V* /S

base base base
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The specifications of the generator specifications and filter parameters can be

found in Table 3.2, 0 and 0. The proposed modeling strategy is implemented in Matlab

environment by using the default Matlab ODE solver.

Table 3.2

Table 3.3

Table 3.4

3.3.2

3.3.2.1

Parameters for generator one in the testing system in p.u.

R =0.002 | L,=1.15 L,=0.7 L,=0.15
R,=0.001| L,=0.09 | R,=0045| L,,=0.025
R,=0.01 | L, =0.045 H=6 freq = 60 Hz

Parameters for generator two in the testing system in p.u.

R =0.001 L,=15 L=15 L,=0.15
R,=0.005| L,=005 | R,=003| L,,=0.025
R,=0.045| L, =0.045 H=6 freq = 60 Hz
Passive filter specifications
R,=0.024Q | L, =13.9mH | R,=0.05Q | L,,=15mH
R, =0.1Q L,=5mH C,,=1mF C,=5mF
R,=015Q | L,=15mH | C;;=0.5mF n/a

Validation with Simulink model/RTDS model

Equivalent Simulink model development

To validate the proposed multi-machine system, an equivalent Simulink system

that has the same structure as in Figure 3.8 is developed. The specifications of the

corresponding components are based on Table 3.2, 0 and 0 as well. The model is shown

in Figure 3.9.
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L s

Figure 3.9  Simulink model of multiple-machine system

o

Torque |—F

Ae—alA apE—=|A +H41il"—Nl'~H[
@ Bﬂ—nﬂmbﬂ—a
exciter —= E
—a|C c|——=|C -

m

o

Torque (——F
Ae—alA apE—=|A + [ i
Bﬂ—nﬂmbﬂ—aﬂ

exciter ——= E
s—a|C c|g——=s|C -

Figure 3.10 Generator side of the equivalent Simulink system
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& TP

Figure 3.11 Load side of the Simulink system

Figure 3.10 shows the power generation units of the Simulink model. A standard
"Simplified Synchronous Machine" from the Simpower library is used to represent the
SM while the "Torque" and "Exciter" blocks are simply represented as constant values
based on the previous assumption. The power converter used here is a three-phase
universal bridge with diodes whose forward voltage is set as "0". Note that the simplified
synchronous machine model needs to be carefully initialized to assure that the machine is
working under steady-state mode from the starting point as the regular generator start-up
operation needs the regulation signal from exciters/torque inputs.

Figure 3.11 shows the load model of the Simulink model. Different than the

system concept diagram, resistive loads L1, L2 and pulse load L3 are combined as they
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can all be are represented in the form of simple resistors while the pulse load is
represented in the form of a resistive load that switch between two values. Motor loads
are represented as controlled current sources with capacitive filters. Notice that the
detailed values of the loads are not consistent and will be defined based on different

operating conditions later.

3.3.2.1.1 Equivalent RTDS model development

To further validate the proposed formulation, we created the same system model
in RSCAD and implemented it on RTDS rack as real-time hardware testament. The
RTDS is a special purpose multi-processor simulation system that is optimized for high
speed power system simulations and closed-loop control and hardware testing [104].
Unlink Matlab and other simulation tools that perform simulations in non-realtime, its
capability to solve the electromagnetic transient in real time has made RTDS simulator a
powerful tool when it comes to power system and power electronics studies. A series of
technical publication about RTDS and the corresponding software suite RSCAD can be
found in [105].

RTDS simulator takes advantage of advanced parallel processing techniques and
hardware architecture to achieve the real-time calculation speed time. The simulator is
assembled in forms of modular units called "racks" which contains slots and rail-mounted
processor cards. For the software interface, RSCAD console is employed for the users to
create system models, perform simulation, and collect data for analysis.

To perform the RTDS validation of the proposed modeling approach on the

RTDS racks of Mississippi State University, the default processor card "3PC" and "GPC"
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is used. The components consisted in the model are from the standard component library
provided with RSCAD console.

The testing system schematic representing the equivalent MVDC SPS model is
shown in Figure 3.12 where the detailed specifications of the each component are based
on Table 3.2, 0 and 0. Similarly to the testing Simulink model, it has two generators
connected to the main DC bus as power supply through diode rectifiers. The generator
settings used for this dissertation is shown in Figure 3.13. Resistive loads, as well as

constant power loads with filters, are fed from the distribution bus directly.

Figure 3.12 The RSCAD testing system
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cnfg Format of Machine electrical data input: v
clgr Number of Q-axis rotor windings: Two v
|trfa Is D-axis transfer admittance known ? No v
mmva Rated MVA of the Machine 28 MVA 0.0001
Vosll Rated RMS Line-to-Line Voltage 4.16 KV
lH’TZ Base Angular Frequency: |60.0 Hertz
lsatur Specification of Mach Saturation Curve Iulear v 3
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!pnyp Solve Model on card type |3pPC - 0 2 -

Figure 3.13 Demonstration of the generator settings in RSCAD

3.3.3 Testing Scenarios
3.3.3.1 Scenario I: Motor load pick up

In order to test the accuracy of the modeling method under various dynamic
conditions, a series of case studies developed based on the recommended ESRDC
practice are implemented using different simulation approaches and their results are
documented and compared. For the first testing scenario, it is assumed that system is
working under the cruising condition where only MTG G1 is running under half of the

generation capacity and ATG G2 is offline. For the onboard lords, it is considered that

total resistive load is R, =2 p.u. and propulsion load is P"=0.25 p.u.. At Simulation time

T=10 sec. another motor load is picked up by the system so that P~ becomes 0.5 p.u..
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The machine states including the rotor speed @, and the equivalent voltage E

equy

following the load step change are shown in Figure 3.14. The DC bus voltage ¥, . and
current i, can be found in Figure 3.15, Figure 3.16, Figure 3.17 and Figure 3.18 with

zoomed-in comparison. It is noticeable that the proposed dynamic model shows
significant difference compared with steady state model which doesn't take machine
dynamics into consideration. Therefore, the simulation results provide solid support for
the previous statement that the machine transients could potentially affect the overall

system behavior during the period of transients if not taken into consideration properly.
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Figure 3.14 Machine states variation
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Besides the comparison of time-domain waveforms, a more quantified result
analysis is needed to characterize the performance of different simulation strategies. Here
we use the standard “Percentage Error (PE)”, as known as “approximation error” to
quantify the accuracy of the modeling approach. The formulation for the PE can be

defined as:

V- Vpredicted

PE =100x (3.38)

Vpredicted
where v represents the simulation results generated from the steady state model, the

equivalent Simulink model and RTDS model while v .., represents the results

generated by the proposed dynamic modeling approach. The current and voltage
magnitude approximation error between the steady-state model and the dynamic model
can be found in Figure 3.19. The comparison between the dynamic model and the
equivalent Simulink model, as well as the comparison between the dynamic model and

the RSCAD model is shown in Figure 3.20 and Figure 3.21 respectively.
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From the comparison, it can be observed the current approximation error between
the steady-state model and the dynamic model is varying from 16% (during the transient)
to 3% (under steady-state). Similarly, the voltage approximation error is varying from 4%
(during the transient) to less than 1% under steady-state. Meanwhile, the comparison
among the proposed dynamic model, the RTDS model and RSCAD model has shown that
the proposed model has the capability to accurately capture the system dynamics during
both transient period and steady-state operation with a maximum approximation error

under 3% for i,

n

and under 0.15% for V, .

3.3.3.2  Scenario II: Load rejection

Opposite to the previous test, for this scenario, it is assumed that the system is
working under normal cruise condition where both MTG and ATG are online. Then the
operation profile of the system changes due to an emergency battle condition and a

fraction of motor load is removed at simulation time T=10 sec. In another word, the total
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propulsion load drops from P"=1 p.u. to 0.6 p.u. This case study can also be used to
simulate the speed step-down scenario of ship in the form of reducing the rated power of

propulsion loads. The DC bus voltage V,,,, generator current output for MTG 7, and

ATG 1,, can be found as in Figure 3.22, Figure 3.23 and Figure 3.24.

~ 104 T T T T T T
S — RTDS
& — Simulink

N 1.02 ~— Dynamic Model
E-] Steady State Model
o

>

w

3 |

m

0.9 | V| ] | ] ! 1 I 1 |
’ %.9 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9
Simulation Time (s)

~ 102 T T T T T

3

&

o

)

3

°

>

w

S

m

8 0.98 | | | S —— |

9.98 10 10.02 10.04 10.06 10.08 10.1

Simultion Time (s)

Figure 3.22 Main bus voltage with zoomed-in view
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3.3.3.3 Scenario III: Generator offline

For this scenario, it is assumed that: originally both of the generators are working
normally while at simulation time T=10 sec, one of the generators (assume MTG) is
damaged and gets tripped offline immediately. Due to the consideration of simplicity, it
is assumed that the system remains within a stable region after the generator goes offline.
The corresponding system bus voltage following the generator offline, as well as current

outputs from each generator is shown in Figure 3.25, Figure 3.26, and Figure 3.27.
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Figure 3.25 Main bus voltage V,
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3.3.4 Simulation Efficiency

In addition to the accuracy comparison, the simulation efficiency of each
modeling method is also recorded and compared here as a performance criteria as it
directly determines the computational resources required for the development of

performance management controller. The elapsed time measurement here is based on a

10 seconds simulation time with a le™ second step time.

From the elapsed time recorded in Table 3.5, we can conclude that the proposed
dynamic modeling method takes relatively longer to finish compared with the steady state
approach. However, it provides a more accurate approximation of the system responses
and the simulation efficiency is still within the acceptable range compared with the
notional high-fidelity baseline model which doesn’t have any form of complexicity
reduction or simplification and the equivalent Simulink model which is moderately
simplified but still contains the switching details. It can be clearly shown that unlike the
full-order model or the switching model, the average-value representation of the MVDC

system is more practical for system-level studies from the perspective of simulation time.

Table 3.5  Simulation efficiency comparison between different modeling methods

Model Type Execution Time
Dynamic model 0.087 (sec)
Steady-state 0.054 (sec)
Equivalent Simulink model 2.8 (sec)
High-fidelity baseline model 1894 (sec)

3.4 Conclusion

In this chapter, in order to facilitate the system-level analysis, the modeling

strategy for the notional baseline MVDC system based on its functional decompositions
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is illustrated in details. The conventional average-value modeling technique is modified
to fit into the time frame of this dissertation. Combined with the standard SM model as
well as the characteristics of onboard load modules, a novel simplified modeling
approach for MVDC system in the form of DAE sets is set forth. The accuracy of this
modeling approach is verified and validated against the corresponding Simulink model
and RSCAD model implemented on RTDS simulator as the hardware benchmark. Its
simulation efficiency is also justified to meet the requirement of system-level studies.
The presented modeling approach can be used as a convenient simulation tool for
research and application designs on shipboard DC power systems. The same modeling
principle can be expanded for studies of short-term stability, governor and load control
design, or even long term dynamics by including the appropriate level of details of the

corresponding components.
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CHAPTER IV

THE CONTROL-BASED PERFORMANCE MANAGEMENT STRUCTURE

4.1 Introduction

For the aforementioned shipboard power system, a variety of performance-related
parameters need to be continuously tuned following a system disturbance to optimize the
dynamic performance of the system especially during the transient period (i.e. suppress
the amplitude of the transient swing and rapidly restore the system to steady state) in
order to satisfy the stringent performance-related requirements for ship operation. Overall
the dynamic performance management system must be able to utilize the existing
shipboard resources, accommodate to the dynamic events, i.e. contingencies and ensure
the response time to effectively and efficiently handle the situation.

The current performance management system still heavily relies on human effort
and rule-based responsive machinery control framework. The operation relies on the
classic feedback control concept to first observe the system states and then take
corrective actions to achieve the specified goals. As the system becomes more and more
complex, it also becomes more and more difficult to keep track of system changes and
provide quick system solutions via manual tuning. In this case, an automated approach
that has the capability to manage available resources to achieve the optimal dynamic
system performance under time-varying operating environment needs to be derived. The

control actions provided by this approach needs to be determined based on a series of
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performance-related cost functions to adapt to the requirement of various safe-operation
constraints and system specifications.

A predictive management framework is proposed in this dissertation where the
optimal control actions that govern the system dynamics are obtained by optimizing the
forecast system behaviors according to the specified criteria over a limited prediction
horizon. The sequence of control inputs that results in the best system performance over
the control horizon is obtained and the first control input of this sequence is applied to the
current system while the others are discarded. This process is repeated every control
cycle until the system is fully recovered.

In this chapter, the modeling strategy developed in the previous chapter is used to
formulate the performance management problem and the design of a predictive controller
that optimizes time-domain system behavior during the transient period is proposed. The
performance of the controller is evaluated based on a series of criteria. It also discusses
how this management technique can be applied to other performance management
applications. To illustrate the design procedure and demonstrate the applicability of the
proposed controller, two case studies are developed where the management framework is
applied to the field controller design and load shedding operation system to optimize the

system dynamic response following disturbances.

4.2 Management framework design
4.2.1 Overview

The main concept of Model Predictive Control (MPC) techniques has been briefly
discussed in previous chapter and will be explained more in depth in this section. A

generic model-based predictive control approach can be applied to the management of a
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variety of dynamic systems in which the system performance can tuned with a set of

control inputs. The key components include: 1) an abstracted system model that

approximates the system behavior with the corresponding measurement units that are

attached to the actual physical system, e.g. sensors or observers which provide the current

actual system states; 2) performance specifications, utility functions and operation

/system state constraints and 3) the controller (optimizer) which generates the optimal

control solutions. A diagram showing those components and their interconnections can be

found in Figure 4.1.
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Figure 4.1 A generic MPC-based performance management framework
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4.2.2  System model, performance specifications and controller design
4.2.2.1 System model formulation

A generic performance management framework targets at a variety of general
classes of power system dynamics, and as noted in the previous chapters, such system

dynamics can be represented with a set of continuous first-order DAEs as:

x=f(x,y,u)
0=g(x,y,u)

4.1)
To solve the equations in the above form, a numerical integration method is
required to be used here. The basic forward Euler method is introduced and used here
[12].

The principle of applying Euler method is to approximate the curve representing

the actual differential function by its tangent having a slope, in another word:

Ax(k) =&

<At 4.2
" (4.2)

x=x(k)

The value of the state variable at the next time step can then be represented as:

At (4.3)

X=X,

x(k+1)=x(k)+ Ax(k) = x(k)+ %

Given that ? = f(x,,y,u)
t

X=X

Such a system can be then discretized as:

x(k+1) =x(k)+ f(x(k), y(k),u(k))- At

(4.4)
0= g(x(k), y(k),u(k))
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In discrete-time form, x(k) e[, y(k)e] ™ and u(k)eU <[]’ denote the

system state variables, algebraic variables and control input variables at time instant &
respectively while Af indicates the sampling interval (normally the same as simulation
time step). As the system is derived based on the discretization of a continuous system, to
make the approximation hold, the state increment Ax needs to be obtained within a small
time region to assure the accuracy of the discrete model. In another word, A¢ needs to be
relatively small to capture the complete dynamics without introducing numerical
instability. In the following discussion due to convenience consideration, the system
states including both differential state variables and algebraic state variables are
combined and generally referred to as x . At the same time, as the operation region of the
system is always compact due to the safety consideration and physical proximity, the
system states x are always assumed to stay within the essential limits in the form of

x € X . Under this assumption, we can simplify the general system representation in the
form of:

x(k+1)=x(k)+ f(x(k),u(k))- At

(4.5)
0= g(x(k),u(k))

To further simply the representation, we will define a new function f(x(k),u(k))
which is equivalent to the previous function of f(x(k),u(k))-At. At the same time, we
will assume that the function 0= g(x(k),u(k)) can be always met. Now the dynamics of

the system can be rewritten in the general form of [93, 106, 107]:

x(k+1) =x(k)+ f(x(k),u(k)) (4.6)
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where X(F) € X <™ u(k)eU = {u,,u,,..u,} 1", and fl"xU 0"

4.2.2.2 Performance specifications

1) Performance specifications: In order to optimize the dynamic system
performance, a series of operating specifications and system states need to be maintained
within a specified range or follow a certain optimal trajectory during the transient period.
The specific series of functions describing the specifications to be optimized are denoted
as H(x). Therefore the basic control principle of the controller is to, by tuning the
control input variables, drive the system into a close neighborhood denoted as D (

D el]") of the desired operating trajectory H' (x) in every time-step and maintain the

system there [93]. A general form representing such specification can be found as:

T(e,u) =|Hx) = H' ()|, + [, + [ (4.7)

S(x)C A

subject to

Here ||*||A denotes the proper norm with weight A. The formulation of the

performance specification considers the cost of control inputs themselves and the cost of
their variations. The costs are decided based on their level of priorities or importance to
the system and standardized to fit in the detailed problem.

2) Operating Constraints: All the system states and control inputs need to operate
within their pre-specified operation constraints. Constraints can be generally expressed

as: ueU and 6(x) c A where U denotes the valid control input set and d(x) A

defines the permissible operation bounds that the system states to be maintained within.

Any control solution that leads to system states violating the constraints shall be
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discarded. Constraints can be generally classified into categories of inequality constraints

denoted as C,, (x,u) <0 and equality constraints denoted as C, (x,u)=0.

ineq

4.2.2.3 Control schemes

The basic design concept behind predictive control is to solve an optimization
problem within a future time horizon based on the abstracted system model and current
system states, roll this horizon forward over specified time intervals and then re-solve the
control problem [93, 98]. In another word, the control policy should return solutions in

the following format:

For each current system state set x(k) €[l ", return u €U so that

|G| = min] £ Ce.a0)] (4.8)
The detailed control strategy described in (4.8) can be represented by the function
MPC(). In the beginning of the operation, define x, as the initial system states and ¢, as

the current simulation time. Then, the controller determines the optimal control input
sequence "u_new " which results in the best cost function output based on the function

"solve()". Both the system dynamics in the form of f(x,u) and the cost function in the
form of J(x,u) need to be provided as well as the operation constraints Ceg (x,u) and
C,, (x,u) . The control input sequence that leads to the minimum cost at the end of the

search is then selected and the first input of this sequence is applied to the system through
the function "apply()". System states are updated accordingly based on "u_new" and the

latest state variables are recorded as the new x, for the next control iteration.

95

www.manaraa.com



Table 4.1 The MPC function

Fkook kKKK MPC[N Ts t0. x0 uo) Kk KE KKK KK
*N: depth of the prediction horizon; Ts: Sampling time interval; t0: initial time
x0: initial system states; u0: initial estimation of control input*/
for each iteration
[t, x]=[t0, x0] /*step one: set the initial state*/
[u_new, x_new]= solve(x, N, Ts, u0, C,, (x,u),C,, (x,u),J(x,u), f(x,u))
*step two: solve the optimal control problem and obtain optimal control input*/

*C,y (x,u) and C, (x,u) represent the overall operation constraints*/

ineq

*J(x,u) represents the cost functions*/

* f(x,u) represents the dynamics of the system (differential equations)*/
[t0, x0]= apply(t, x, Ts, u_new, f(x,u))

*step three: apply the obtained control input and generate the state updates*/
end for

4.2.3 Detailed framework design for SPS

The generic framework discussed in the previous section is modified to adapt to

the detailed requirement for the dynamic performance management for shipboard power

systems. Since this design practice serves as a preliminary investigation of the MPC

concept implemented in power system, assumptions are made:

Assumption #1: An ideal latency-free communication system is assumed, so the

signals and system states are transferred without delay.

Assumption #2: All the electrical losses during operation is neglected, therefore

the power loss is not a valid criteria for this design practice.

The detailed procedure can be defined step by step as:

1. Select the contingency (contingencies) and apply it (them) to the system. Sensors

within the system are assumed to detect the adverse operating conditions and initiate
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the recording of system states to capture the system responses closely following the
contingency.

After the contingency happens, fast component level controls and the operation of
relays and other protections devices are assumed to start instantaneously, including
relay tripping off, fast disconnection from distribution network, converter setting
change and etc. It is considered that at this point, the system structure will stay
unchanged with no other external control actions.

Identify the constraints C,,, (x,u) <0 and C, (x,u) =0 based on the system

specifications and operating conditions.
Form the system level dynamic performance optimization function. Based on the
aforementioned control design concept, the objective function that describes the

performance optimization criteria can be defined as:

mln("]l) Jl = ||F(x) - Elesired (x)” (4'9)
where formulation of F'(x)is based on the average-value model developed in

Chapter I1I.

In order to demonstrate that the proposed management framework is flexible and can
be integrated with other power management utilities onboard, we also consider the
static system performance as an addition to the dynamic performance cost function.
Objectives like optimal fuel optimization, minimizing power loss and optimal power
dispatch can be performed using static optimization methods including economic
dispatch and optimal power flow formulation. The objective function that describing
the objective of the static optimization can be formulated similarly in the form of:
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min(J,)  J, =[S =S, ) (4.10)
where function S(x) is directly associated with the desired static optimization criteria
and thus can be defined accordingly under different operating conditions.

Form the cost function for control inputs. In general case, maintaining the control
inputs at their desired values takes certain amount of system effort. Meanwhile,
control input variation also generates cost that needs to be taken into consideration
from the system perspective. As the control input set may contain more than one

element, elements involved within u, need to be standardized i.e. converted to the

same unit-less scale. The objective functions can be formulated separately as:

desired
min(J,) J,= | 4’ (4.11)
VieU u,
) Au _AufieAvil‘ed
min(J,) J, = \/Z B(———=—)") (4.12)
VieU Aui

where 4, and B, stand for the weighting factors for each elements that reflect the
internal relationship/priority levels within the control input sets. », and Au; denote

the minimum accessible values that can be derived solving (min H”l —uered

1

,Viel)

and (min HA% — Auer

,Vi eU) from off-line studies. For cases that » or Au;

being zero, a very small number (typically 16_3) 1s added to avoid the division by
ZETOo error.
For the overall optimization formulation, the optimization of system transient

response trajectory J, is combined with steady-state optimization objective J, as
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well as the control input cost J, and J, to finalize the overall objective function.

After normalizing individual objectives into a uniform, dimensionless scale, the

general system cost function can be represented as [96, 108, 109]:

2 2 2 2
i (2] o () (2w (4] any
1 2 3 4

(x,u)<0 and C, (x,u)=0

subject to constraints as: C,

ineq

Wdyn +W.

sta

as well as: Wy + Wy, =1

/4

sta

The values of the weighing factors W,

o> W,, W, aswellas A, and B, are
decided for on a given operation scenario and therefore reflect the priority of
optimization during the transient phase from a global perspective. By tuning the values,
the management framework is going to be able to handle a variety of multi-objective
optimization problems under different operating conditions.

In (4.7), J; - J, are called the scaling factors for each cost function as they have
different units and orders of magnitude/dimension. In order to represent and compare
their level of priorities on a unit-less, global scope, scaling factors are imperative when

formulating multi-objective functions. For this practice, the minimum accessible values

of each individual cost function J, - J, subject to the system constraints are used as the

scaling factors. For every control iteration, each of the cost functions are solved first to

derived J, - J, . Based on the latest values of J; - J, and the vector of pre-specified

weighting factors, the objective function can be formulated and calculated. The generated

solutions, i.e. optimal control inputs are feed back into the system to update the system
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states. This process is repeated until the system reaches at a relatively stable operation

point. The algorithm flow chart is illustrated in Figure 4.2.
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Figure 4.2  Algorithm flow chart of the proposed controller

4.2.4 Optimal search strategy

As mentioned in the previous chapter, the control scheme requires a core function
"solve()" to search and determine the optimal control input over every step of the
prediction horizon. The search algorithm is directly related to the efficiency of the whole
controller and thus need to be selected carefully. While a variety of search methods can
be applied to solve the optimization problem, we will start from the basic search strategy

which is known as the "tree search" method [110-113].
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Tree search strategy is suitable for discrete type of inputs. The detail of the tree
search algorithm is demonstrated in Algorithm. 1. This function accepts the current
system states, and uses them as a starting point to generate a tree of all the reachable
system states up to the specified prediction horizon depth N based on the combination of
the possible control inputs. Those predicted system states, as well as the control inputs

are subject to constraints represented as “C,,, (x,u)” and “C, (x,u)”. The cost of each

ineq

estimated system states is calculated based on the cost function J(x,u). The state x___

corresponding to the minimum cost is selected and the first control input leading to the

state x,_,, 1s returned as the output. This search is performed every control interval.

The tree search strategy introduced above is straightforward and can be
implemented easily. However, the computational burden of this method increases
exponentially with the increasing number of control inputs and length of prediction
horizon. This is a major concern for systems that have a large set of control inputs as
every possible combination of the control inputs needs to be considered in order to
construct the tree data structure and in-order traversal of the tree requires the visit of
every node that stores data for each control interval. In order to improve the calculation
efficiency, complexity reduction strategies need to be applied to reduce the computational
overhead for actual applications. In other word, instead of the exhaustive search, a more

efficient algorithm is preferred to produce the control solution.
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Table 4.2  Algorithm.1. The tree-search based solver algorithm

solve(x(t), N, C,, ., (x,u),C, (x,u),J(x,u), f(x,u)))

Sy =x(t)
for i=0 to N-1
§,, =0
for all x € 5, and all valid inputs u
do
x:= f(x,u)
if X satisfy C,

g (1) @nd C, (X,u)
Si =8, VXS
Cost(x)=J(x,u)
end if
end for
i=i+1
end for
X, =argmin {Cost(fc)| xXesy}

Returnu (¢) as initial input leading from x(t) to x, .

One approach that can help reduce the complexity of the search algorithm is to
utilize the existing optimization algorithms in the AI community [93]. Such algorithms
include: Genetic Algorithm (GA), Particle swarm optimization (PSO), A* search,
Pruning Equivalent Nodes, and Greedy Search. Particularly, if the control input set is
continuous, or discrete but with a large and uniformly distribution which can be
approximated as a continuous domain, then a variety of traditional optimization
techniques (linear or non-linear) can be implemented here as well [114].

To perform such type of multi-objective optimal search, an applicable tool that
can be utilized here is the Matlab Global Optimization Toolbox™ [115] provided in

Matlab version R2008 or newer. The Global Optimization Toolbox™ provides generic
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methods that can be used to derive the global solutions for multi-objective optimization

problems that contain multiple maxima and minima while the another tool Matlab

Optimization Toolbox™ [116] is generally used to find local optimum. Compared with

local optimum solvers that only find a point where the function value is smaller than or

equal to the value of "nearby" points, the Global Optimization Toolbox™ is designed to

search more than one basin of attraction in various ways.

The solvers that can be directly used for the purpose of this dissertation include:

global search (fmincon), multi-start, pattern search, genetic algorithm (ga), and simulated

annealing. The function of each solver can be found briefly in [117]:

Global search solver and multi-start solver: They generate a number of
points as the starting points and then call local solver to find the optima in
the basins of attraction of the starting points. Function fmincon(), which is
gradient-based and finds minimum of constrained nonlinear multivariable
function, is the most commonly used local-optima solver.

GA solver: it generates a series of random starting points, and iteratively
produces better points from the starting points. GA is a population-based
method and thus has no convergence proof.

Simulated annealing solver: it performs a random search and accepts a
point if it is better than the previous point. It will occasionally accept a
worse point as well to make sure all the basin of attractions is covered.
Pattern search solver: it examines a number of neighboring points before

accepting the point of interest.
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A comparison of those four different types of solvers have been conducted and
the performance of each algorithm has been reported in [117] with regards to run time
and accuracy. Particularly for the SPS, multi-objective genetic algorithm solver (ga) is
used for discrete type of control inputs as it accepts integer value of control input (Mixed
Integer Programming), supports linear and nonlinear constraints, and achieves relatively
accurate optimization results within reasonable steps of iterations, while global search
method utilizing fmincon solver is used for continuous type of control inputs for its best
accuracy and efficiency in exploring different basins especially for non-linear
optimization problems [118]. The optimization algorithms that are available to fmincon
function include 'active-set', 'interior-point', 'trust-region-reflective' and etc. In contrast,
ga function has a fixed algorithm which repeatedly modifies a "population" that consists
of individual solutions. For each iteration, the algorithm selects individuals at random
from the current "population" to be parents and uses them to produce the children for the
next generation. As the best point within the population is selected for each iteration, over
successive generations, the population "evolves" towards an optimal solution [119].

Notice here the detailed analysis of the optimization algorithms is not the main
focus of this dissertation. The management framework selects and utilizes the existing
algorithms provided by the Matlab toolbox directly without getting excessively involved
with the concept explanation and detailed numerical derivation process. However, the
performance of the aforementioned algorithms is still going to be evaluated respectively

and compared to improve the control efficiency.
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Table 4.3  Algorithm.2. The solver algorithm based on function ga

solve(x0, N, u_int, C,
for k=1:N
determine [nvars, A, b, Aeq, beq, 1b, ub, IntCon] based on x0, f(x,u%), u_int, and
Cheg(Xxsu)/ C,, (x,11)

ineq

e (551), €, (1), T (x,10), (%))

% nvars is the number of design variables of the fitness function J
% IntCon indicates the listed variables only take integer values
end for
[u, ~, exitflag, output] = ga (@(u) J(x,u), nvars, A, b, Aeq, beq, 1b, ub, @(u)
Ceg(Xsu)/ C,, (x,u), IntCon, options )

ineq

Table 4.4  Algorithm.3. The solver algorithm based on function fmincon

solve(x0, N, u0, C,, (x,u),C, (x,u),J(x,u), f(x,u)))
for k=1:N

determine [A, b, Aeg, beq, Ib, ub] based on x0, u0, f(x,u),and C.

ineq (x’ 1/[) / Ceq ('x’ u)
end for
[u, ~, exitflag, output] = fmincon (@(u) J(x,u), u0, A, b, Aeq, beq, Ib, ub, @(u)

Ceg(x;u)/ C,, (x,u), Options )

4.3 Feasibility analysis of the management strategy

As the online search algorithms can only search limited space ahead, it is of
importance to address the feasibility property of the control algorithms. By definition, the
controller is "feasible" for a given set point if the control algorithm can guide the system
from the initial states to a desired neighborhood of the set points and keep the system
within that region. The feasibility can be seen and formulated as a joint problem of

containability and reachability, which can be specified as: 1) The containability problem

which is to determine a subset S < D where (Vx €S)f(x,u’ ) €S ;2) The reachability
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problem which is to decide if the region D is finitely reachable from the given initial

state under the given control policy and the returned control solution u . The feasibility
of the basic case with fixed system parameters [106] and more complicated case where
the system parameters are uncertain and need to be predicted [93, 107] have been
analyzed and discussed. In this section, the non-linear programming based computational
procedure and the relative mathematical derivation process will be briefly reviewed and
formulated in the form that can be solved as a nonlinear max-min problem.

First, for all u, eU, let

W, ={xel”

f(x, “1)” < ||x||} (4.14)
Under this definition, W, is the set of states that can be brought closer to the ideal
trajectory by the control actions. Let O be the summation of all ,, in another word, Q

includes all the system states that can be driven closer to the region D. Define [ © as the

set of all non-negative real numbers, for an » €[] * write B(r) to represent the closed ball

in [J " with the radius 7, and write 0B(r) for the boundary of B(r), so we can have:

OB(r)={xe B(r)| ||x|| =r} (4.15)
Let O =X —Q be the complement of O with respect to the complete system state

set X . As X is defined as compact, Q is also considered as compact. Let:

r= rge%xuf(x,u*)” = max min”f(x,u)” (4.16)

xeQ ueU
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With U being finite, »* is also finite. Based on the definition of O, we have the

basic representation of:

(VxeQ)(Vu e U)||x|| < ||f(x,u)|| (4.17)

Rewrite it based on the previous definition,

(Vxe Q)”x” < rglelgl”f(x,u)” <r (4.18)

Therefore it can be proved that O — B(r").
If B(*')c X, then B(+") is a containable region. Furthermore, if there exists
another region B(r) that satisfies O  B(r), then »* < 7. To calculate r°, as

F =max m151|| f (x,u)” it is essentially a max-min problem which can be converted to a
xeQ ue

well-defined Non-Linear Programming (NLP) problem.
For systems with simple dynamics and constraints, the NLP problem can be
solved in an analytical approach. But generally, the optimization tool as provided in

Matlab or Mathemetica [120] can be used directly to solve the max-min problem.

4.4 Performance evaluation of the management framework

For a limited search strategy with a limited control input set and a finite prediction
horizon, the proposed management strategy can only achieve the sub-optimal
performance. The performance is directly related to several design factors and those
factors can be listed as [93]:

e Length of the prediction horizon ( N ): increasing the length of the

prediction horizon can typically improve the performance of the proposed
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manager. However, as the future predictions are made only based on the
current system states and the mathematical model, the positive effects of
the increased prediction horizon will be countered by the accumulation of
predication errors caused by the model mismatch as the control strategy
explores deeper into the prediction horizon. At the same time, increasing
the prediction would significantly increase the amount of computational
effort for every control cycle. Therefore it is always desired to investigate
the length of prediction horizon carefully for different systems/scenarios.
Control set (U ): for the purpose of this dissertation, the available control
actions include a variety of different options. For some cases, the control
inputs need to be selected from a finite set while for other cases, they need
to be chosen from a continuous domain. Under certain conditions, a
continuous control input region needs to be discretized based on the
system requirements. Therefore it can be concluded that the definition of
the control input set has direct impact on the performance of the controller
from many aspects. As the result, the control input set is also considered
as a design choice that needs to be optimized to improve the performance
of the performance management controller.

Sampling time interval (7, ): successful implementation of the

performance management requires the system states to be sampled based
on the operational frequency of the system and the objective functions that

need to be optimized.
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The effectiveness of the management strategy can be evaluated based on the
criteria of fitness, robustness and computational overhead.

e Fitness: this index characterizes the ability of the control strategy to reach
a suboptimal solution. The basic definition is to define fitness as the ratio
of the average utility to the average utility. The average utility can be
either computed offline for a given system model and a given disturbances
or calculated online.

e Robustness: this criterion indicates the variations in the system utility in
response to variability in the disturbances and system states. The
controller performance can vary vastly depending on the magnitude/types
of the disturbance.

e Computational overhead: this criterion defines the relevant computational
time requirement for the management strategy. Especially for the transient
performance management as the target of this research work, it has a very
stringent requirement for the computational speed. The computational
overhead is directly determined by the prediction horizon, control set, and
the sampling time.

The above performance criteria are available to various application/systems. They
are calculated for a specific design objective for a specific system model under given
operating condition(s) to evaluate the capabilities and characteristics for the system

management framework.
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4.5 Case Study I: Field controller design for pulsed load starting up

Field oriented control of induction motor drives is considered as an effective and
efficient approach as it allows the torque to be tightly controller instantaneously [58].
DC-link stabilizing field-oriented control has been proposed by Sodhuff in [58]. It is
based on the assumption that torque control in a field oriented drive is very fast and can
be seen as instantaneous. In the typical situation, the value of this torque is set equal to
the desired torque as requested by the mechanical system governor. However, by
modifying the conventional torque value, a very fast field oriented control can be applied.

The control implementation can be described as:

T =V, [V, T (4.19)

SO that an = (I/ZJC/%C)nPreq

where the V,_ is the filtered DC bus voltage that can be defined as:

dv,Jdi=(V, V)] (4.20)

Within it, z (7 €[0,1]) and n (n €[1,10]) are considered to be time-varying and
continuous within the desired range. By suitable selection of 7 and 7, a large variety of
dynamic behavior can be obtained. The outline of this control process can be found as in
Figure 4.3.

From the literature, the effect of varying » and z has been analyzed in [58] and
[121] based on the linearization of the non-linear dynamic equations using root-locus
approach. It is demonstrated that of those two variables, » plays a more important role in

the determination of system dynamic behavior during the stabilizing process compared to
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7 . Therefore in this case study, we will use » as the control input for the model-based
predictive control design and assume parameter z staying as a constant during the
transient phase with 7 =4. The design solution to this problem is relatively simple and
straightforward, therefore it is chosen here as a preliminary demonstration of the

proposed management framework.

Angular
. DC Current | Induction Speed .
Synchronous Machine > > Mechanical
h Rectifi « Motor and | Load
with Recuhier DC Voltage | Drive Required oa
Mechanical
Torque
Angular
. DC Current | Induction Speed .
Synchronous Machine > » Mechanical
< Roctifi « Motor and | Load
Wil cetner D(C|Voltage Drive oa
Required
(Vi)" Mechanical
L Torque
(s +1) 4

Figure 4.3  Field oriented stabilizing control concept

For demonstration purpose, the same testing system as used in Scenario I of
Chapter III is used for this case study. We will focus on demonstrating the design practice
of dynamic management on improving the DC bus voltage damping. Similarly, it is
assumed that the load is running under half of the maximum generation capacity with P’

=0.5 p.u., and at time instant T=2.5 sec, another load (e.g. a pulse load) is picked up so
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that the load is running under full capacity which indicates P"=1.0 p.u.. The optimization

objective can then be defined as:

min(|V},, (x) =¥,

) 4.21)

subject to: n €[1,10]
Note that no other system constraints are necessary here, and for the
demonstration purpose, the prediction horizon depth is set as N=1 time step.

The information exchange and the general system structure can be found as in

Figure 4.4.

| |
| |
: Control Algorithm _ T :
| T |
: Control u(t.k) :
| Input System Model | x'(z +1,k+1)| Utility Function |
[ 4 [
. | |
System being I
disturbed | u (1.k) :
Mainm | Actual System |
| |
i N |+
| ! |
! T |
| |
| |
| |
= AT T=r+1
I=1 “‘\1—] Simulation Time
-

Figure 4.4  DC-Link stabilization control system structure

In the conventional approach presented in literature [58], the non-linear
differential equations governing the DC-link dynamics with the presence of the control

inputs are first linearized. Then the root loci of the characteristics equation with
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n=1,3,5,7 (n doesn't have to be an integer though) and 7 varied from 0.1 to 1 is plotted.
Based on the characteristics shown in the root loci plot and the complex pole pair
damping diagram, a number of manually selected combinations of (7,7) are compared.
The final selection for the stabilizing controller is: (7 =4,n=1) for the testing system. In

order to evaluate the performance of this control approach compared with the proposed
control design, we implemented the optimal control inputs derived in [58].

The DC bus voltage damping of 1) system with no controller applied, 2) system
with a fixedn (n=3) and 3) system fully controlled , as well as the variation of control

inputn following the contingency can be found in Figure 4.5 and Error! Reference

source not found..

LO3 !
: : : — No control
— Controlled

— Fixed 'n=3"

1.02

1.011-

DC Voltage (p.u.)

2.05 21 215 22 225 23 235 24 245 25
Simulation Time (s)

0.96

2

Figure 4.5  Detailed dynamic response comparison
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The simulation results prove that the proposed performance management
framework could effectively improve the voltage oscillation caused by the load step
change.

To compare the controller’s performance based on computational burden and the
average fitness, we have tested the proposed management strategy subject to prediction
horizon with different length N. The computer hardware used for the performance
analysis includes an Intel 15-2500k processor with 16GB of memory.

Within the table, "fbest" denotes the averaged minimum value of the global cost
function returned from ga, which reflects the fitness of the generated strategies. Naturally
"fbest" is expected to be zero which indicates that the system is following its optimal
operating trajectory. For this case study, "fbest" is assumed to characterize different
management strategies and control solutions as it describes the ability of the control

strategy to reach a suboptimal solution. The results can be found as follow:

Table 4.5  The effect of different prediction horizon on controller performance

Prediction horizon N fbest Execution time (sec)
1 0.6432 26.68
2 0.6531 31.04
3 0.7172 31.20
4 0.6346 34.11

From the simulation results, it can be observed that the increment of prediction
horizon leads to longer simulation time, but it does not directly improve the performance
of the proposed optimization strategy. Experiments performed in [93] has proven that for
an ideal exhaustive tree-search strategy, with increased prediction horizon, the fitness

increases upto a certain N and starts to fall afterwards as for longer prediction horizon,
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the estimation error and mismatch between the mathematical model and the actual system
behavior are expected which degrades the controller’s performance. Particularly for the
proposed framework design, another critical factor needs to be taken into consideration is
the impact of the efficient search techniques. Instead of considering all the possible
combination of system states and control input variables, efficient search algorithms like
function fmincon/ga cuts the possible search region in order to reduce the computation
time, thus provides a sub-optimal solution. Table 4.5 demonstrates and justifies this
assumption. Depending on different system models, specifications, operating conditions
and solvers, it is hard to come up with a general conclusion on the relationship among the
prediction horizon, computational overhead, and performance. An overall evaluation is
suggested to derive the optimal or sub-optimal controller specifications for a given case.
Trade-off studies have to be performed based on the available computational resources

and the desired fitness of the control strategy.

4.6 Case Study II: Generator offline and automatic Load shedding strategy

Based on the review in Chapter 11, we could conclude that for a load shedding
scheme, the following factors need to be taken into consideration:
e Total load demand and total generation capacity
e Working conditions of each generator unit including current power output,
spinning reserve, and the corresponding control settings
e System configuration including available tier-line numbers and their
status, working conditions of converters, loading conditions of all the

loads, especially of the sheddable loads
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e System transient response including system frequency response, voltage
response, and the operation status of protective devices

A good load shedding system is able to incorporate all of the considerations into
its decision-making process. In the following discussion, the proposed performance
management system will be used to perform the optimal load shedding to minimize the
voltage oscillation caused by the load shedding operation while satisfy the static QoS
requirement.

As one of the recommended practice mentioned in Chapter II, the system
response after sudden loss of a generator is studied here. It is assumed the ship is
operated under cruise model where only one MTG and one ATG are online. The
information of those two generators can be found in Table 4.6 while the load information
can be found in 0. Then the ATG is tripped offline due to an internal failure and the MTG
cannot provide sufficient power for the connected loads before the startup of back-up
generator(s). Load shedding is performed by the dynamic performance management
framework incorporating with a static dynamic load shedding controller to assure:

ObjI: the smallest combination of low priority loads to be shed that most quickly
restores the system to stable conditions before the back-up power supply initiates

Obj2: the dynamic transients caused by the generator tripping and the load
shedding operation are within a safe region to maintain the system stability.

Based on the discussion above, for this case study we use the simplified multi-
machine model as developed in Chapter III as the system model and assume that each
zonal load can be instantly switched on/off respectively via the management framework.

Those loads also have different detailed functionalities which lead to the different priority
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levels for a specific mission. Information of each load can be found as in 0. The
information as listed was originally obtained for related load shedding operation in [84,
122], and is modified based on [18] and used here for demonstration purpose only which
may not reflect the actual physical component properties. For simplification, all the loads

here are considered to have a unity power factor.

Table 4.6  Generator information table
Generator Type Load ID Rated Power (kW) Status
Main generator Gl 36000 On-line
Aux generator G2 20000 On-line
Table 4.7  Load information table
Load Type Load ID | Power Rating Status Priority Equivalent
(kW) Level Resistance
Propulsion load P1 12000 Vital 100% N/A
Propulsion load P2 16000 Vital 95% N/A
Motor load M1 7000 Semi-vital 70% N/A
Static load S1 1000 Non-vital 20% 3.4611
Static load S2 2000 Semi-vital 45% 8.6528
Static load S3 4000 Vital 85% 2.1632
Total 42000

Of the listed loads, it is assumed that static loads are presented in the form of

equivalent resistance R, while motor and propulsion loads are represented in the form

F,
of equivalent constant power using current injection —— with filters. At this point, the

bus

system model has been successfully developed and in the next step, the optimization

problem will be formulated.
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To derive the optimal load shedding strategy, there are a variety of factors that
need to be taken into consideration, including the cost of the connecting/disconnecting
certain load (by switching on/off), the energy balance that needs to be
maintained/capacity limits of the generators, the specific priority level of loads during the
operation with regards to the QoS requirement and the bus voltage regulation. Based on
the discussion of Section 4.2.3, we will formulate each individual optimization problem
and combine them into a global optimization objective function with constraints. Solver
ga will then be used to solve the problem and provide solutions in the form of optimal
load shedding actions. With the detailed parameter settings, the optimization objective of
this case study can then be formulated. Recall equation (4.7), the general global

optimization cost function can be found as:

2 2
J J J J
min W, | S| W | 2| W, ()W, (BR) 422
\/ dyn [JIJ sta (sz U (J3) Uc (J4) ( )

More specifically, for this case study, the control input can be defined as:
u, = u,uy,15,1,,us,u; | where u,, u, and u, determines the equivalent power ratings of
propulsion load P1, P2 and motor load M1 in kW, and u,, us, u, stands for the
connection/disconnection status of the static resistive loads S1, S2 and S3. With this

definition, it is obvious that [u,,us,u,] are integers that are either 0 or 1 while [u,,u,,u, ]

u, €[0,12000]
are values within the range of their power ratings respectively, i.e. <u, €[0,16000].
u, €[0,7000]
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With regards to the individual cost functions, J, = min(|F(x)— F,,, .., (x)|)

describes the performance criteria of the dynamic voltage performance. In this case study,
as we want the voltage to return to the original status as soon as possible; thus, we choose

F, ... (%) to be the ideal system bus voltage magnitude under steady-state operation

which is a constant 5000. Therefore J, can be represented as:

J, = min(|F(x) —5000])) (4.23)
Moving to the next objective function, function J, = min(|S(x) = S, (X))
describes the general static optimization objective. For this case study, as the QoS
performance is directly connected with the control inputs rather than system states, J,
can be rewritten based on the value of components within u, . Ideally, we want all the

loads to be on or working at its notional condition which puts the S at 4.15; thus,

desired

accordingly the cost function of J, can be specified as:

J, =min (4.24)

1-1, /12000 +0.95-11, /16000 +0.7 -1z, / 7000
+0.2-u, +0.45-u, +0.85-u, —4.15

With ATG tripped offline during the simulation, the power balance between the
remaining generator G1 and the total amount of the system loads needs to be taken into

consideration as well as the desired spinning reserve, which suggests that:

1, +1t, + 11, +1000- 12, +2000- 1, +4000-1, <36000-90%=32400  (4.25)

subject to:
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u, €[0,12000],, €[0,16000], u, €[0,7000]
u, €[0,1],u €[0,1],u, €[0,1] (4.26)

u, €ll,u; ell,u, el
With regards to the cost of control input implementation, it is apparent that
maintain loads at their original conditions doesn't cost extra system resources; thus, it is
considered that /¥, =0, which suggests cost function J, is ignored. However, tripping
off certain static loads or reducing the power rating of CPL loads would still require a
certain amount of system/human effort. To start defining and quantifying the operation

cost for each control input, the general cost function of J, can be recalled as:

) A —A .desired
J, = min( \/ 3 By (4.27)
VieU AI/I

From the system perspective, it is apparently desired that all the loads are staying

at their original working condition, i.e. Au’"* =[0,0,0,0,0,0]. Similarly, Au; can be
derived as: Au, =[u, i, 11, 1, 41, 1] where p stands for a tiny value, e.g. le”. The value
of B,---B, can be defined based on different operating conditions; however, to simply
the case study, a fixed set of B,--- B, is used here as

B =[1/12000,1/16000,0.8/7000,1,0.6,0.8]. Thus, J, becomes an optimization problem

that can be described as:

min( /Z Bi(%)z) (4.28)

subject to:
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Au, €[0,12000], Au, €[0,16000], Auz, [0,7000]
Au, €[0,1], Au, €[0,1], Au, €[0,1] (4.29)

u, ell,us ell,u, el

Considering that fact that the remaining generator capacity has to be larger than or

equal to the total remaining load power:

ALoad = Au, + Au, + Au, +1000- Au, +2000- Aug +4000- Aw,
>42000-36000-90% = 9600

(4.30)

At this point, combining each of the derived individual cost function, the global

optimization problem can be formulated as well as the system constraint. Once all the
weighting factors are determined, we could start calculate the scaling factors J;, J,,J,

and solve the global objective function using the proposed performance management
system using Algorithm 2 with ga solver. In the following section, we will demonstrate

the implementation and solving procedure of this optimization problem.

4.6.1 Implementation and result analysis

DCMain.m
‘/"/ : “
Solverf.m | Solverg.m
DCDae.m
Figure 4.6  Matlab script structure
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The structure of the Matlab scripts performing the optimization strategy can be
found in Figure 4.6. The main script is called "DCMain". It defines all the relevant
simulation parameters/global variables and the dynamic event. The dynamic event is
generally represented in the way of the change of critical parameters. For every

simulation step time ¢, , "DCMain" calls "Solverg" to pass f. "Solverg" then calls forth

"DADae" which contains the essential DAEs as derived in Chapter III to generate the
updated system states using ODE23s solver for the next simulation step time, and the
generated state information is sent back to "DCMain". After the system disturbance,

relative specifications are changed in “DCMain”. Constraints are formulated, and for

every control time interval ¢, , “DCMain” calls ga to generate the optimal control inputs

utilizing function “solverf”. Like “solverg”, “solverf” calls “DCDae” to generate the
system states over the prediction horizon N. It also contains the general form of all the
individual cost functions as well as the global multi-objective function. Based on system's
request, the predicted system states information is used to formulate every detailed

individual objective function J,,...J, . ga will be called multiple times in "DCMain" to

assure that all the corresponding scaling factors J; ,...J, are derived. Then, since all the

reference values, weighting factors, as well as the scaling factors are available, the
detailed global cost function can be formulated in “solverf”. After ga solves the global
multi-objective optimization problem, it returns the optimal control solutions to
“DCMain”, those optimal control inputs are implemented via “Solverg” to update the
system states. This control loop is repeated until the system recovers or the total

simulation time is up.
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For this case, the prediction horizon is set as 1 initially. The option setting of the

ga solver is defined as:

opts = gaoptimset(...
'PopulationSize', 50, ...
'Generations', 50, ...
'EliteCount', 5, ...
'"TolFun', 0.1);

To verify this approach, we will implement the proposed design algorithm and
evaluate the generated control solutions with regards to the system dynamic response and
QoS rating. The performance of the acquired control strategies are compared respectively
based on different operation priorities. Notice that the priority parameters used in this
case study are solely defined for the demonstration purpose and do not reflect the actual

priorities during mission operations.

4.6.1.1 Scenario I

For Scenario I, the top priority is to optimize the dynamic voltage damping of the
system during the transient phase. QoS performance and the control actions are
considered less important. A set of weighting factors can then be determined as in Table

4.8.

Table 4.8  Weighting factors for Scenario [

W, =85% W, =10% W, =5%

dyn sta

The generated control input, system voltage response and the QoS rating

following the ATG offline can be found as:
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Figure 4.7  Bus voltage comparison
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Figure 4.8 QoS performance
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Figure 4.9  MTG current output comparison

From the result comparison, it can be observed that the bus voltage has been
greatly optimized compared with cases where no control actions are applied. The current
output of MTG is also optimized to avoid over-current. In contrast, the QoS performance

is relatively bad as it decreases to less than 30% of the normal operation level.

4.6.1.2 Scenario 11

For Scenario II, what is different than the first scenario is that the top priority is to
optimize the QoS. The dynamic response and the cost of control action implementation

are set as less important objectives for the operation. A set of weighting factors can then

be determined as:
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Table 4.9  Weighting factors for Scenario II

W, =10% W, =85% W, =5%

lyn sta c

The generated control input, system voltage response and the QoS rating can be

found as:

— Without Control
— WIth Control
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Figure 4.10 Bus voltage comparison

126

www.manharaa.com




1.02 T T

0.98

0.96

0.941-

0.921

QoS Performance (%)
1

0.881

0.86

| 1 | | | 1 | | |
49 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
Simulation Time (s)

Figure 4.11 QoS performance
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Figure 4.12 MTG current output comparison
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The simulation results have demonstrated that the system QoS performance has
been maintained at its maximum level via control inputs as it has the highest priority
level. However, the bus voltage and MTG current output is not optimized as they are not

considered to be important.

4.6.1.3 Scenario 111

For Scenario 111, the priority for the dynamic voltage response optimization and
QoS optimization is set as equal; thus, we want the system to achieve optimal voltage
performance while maintaining an optimal QoS rating. The weighting factor can be found

as:

Table 4.10 Weighting factors for Scenario III

/4

dyn

=45% /4

Sta

=45% W, =10%

=~ Without Control
— With Control

0.98
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Figure 4.13 Bus voltage comparison
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Figure 4.15 MTG current output comparison
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This scenario has demonstrated that the QoS performance can optimized in
parallel with bus voltage damping optimization. The performance management
framework manages to drive the bus voltage to the optimal level within 0.15 sec while
maintaining the QoS rating at a relatively high level (>60%). Compared with the previous
two scenarios, the performance of Scenario III is more balanced between different

objective functions.

4.6.2 Performance analysis

Compared with typical load shedding strategy development approaches as
reviewed in Chapter 2.6.3, the proposed framework has a variety of advantages include:
e (apability of including the transient performance optimization criteria
e Highly flexible and customizable
e Proven effectiveness
Table 4.11 summarizes the performance of the management framework based on
different prediction horizon setting N. The results are collect from repetitive runs of
Scenario III which finds the balanced control inputs to optimize the overall system

performance.

Table 4.11 The effect of different prediction horizon on controller performance

Prediction horizon N fbest Execution time (sec)
1 1.3238 280
2 1.3125 294
3 1.3106 302
4 1.3078 311
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Based on the comparison of the performance analysis results, we can conclude
that for this case study, prediction horizon increment leads to longer execution time;
however, increasing the prediction horizon doesn't greatly increase the performance of
the proposed management framework.

The profile for running the function "DCmain.m" is attached as in Figure 4.16.
From the simulation profile we could observe that solving ga and its related functions
takes most of the execution time compared with other parts of the function. Based on this
observation, it can be concluded that in order to improve the simulation efficiently of the
proposed management framework for actual onboard applications, the computational
speed of ga needs to be greatly increased. A few approaches to achieve this goal have
been illustrated in [119] including lowering the setting of ga and introducing parallel

processing in Global Optimization Toolbox.
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Function Name Calls Total Time Self Time* Total Time Plot
(dark band = self time)
DCMain 1 280711s | 0366s |
ga 40 272124 s 0024 s |
globaloptim\private\gaminlp 40 271.811s 0009 s |
globaloptirm\private\gaminlpenging 40 271797 s | 0010 s ]
globaloptim\private\galincon 40 271122s 0119 s |
.gaminlppenaltyfenix problem.conScale) 1040 266.732s 0026 s |
alobaloptimiprivate\gaminlppenaltyfen 1040 266706 s | 0.151s ]
globaloptim\private\fcnvectarizer 1040 266423s | 0393s |
.ateAnonymousFen=@()fen(x Fendrgs:l) 52040 266.231s | 0834 s ]
@(p)solveqitifo p) 52040 265397 s 0494 s |
solveq 52040 2645903s | 1771s [———
globaloptim\private\stepGA 1000 258712s (0114 s |
ode23s 58041 258.428 s 89.396 s | I
funfuniprivate\odenumjac B51855 | 108370s | 76.422s | HEEN
deegmul 4080372 | 66.600 s 66.600s
odeget 928656 | 14.524 s 6.648 s I
odeset 56041 12,580 s 10372s |1
globaloptim'private\makeState 40 12193 s 0.012s 1

Figure 4.16  Simulation profile of “DCMain.m”
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CHAPTER V

MODEL-BASED DESIGN ENVIORNMENT DEVELOPMENT

5.1 Overview

Based on the previous discussion, the dynamic system responses caused by
disturbance under different operation scenarios, especially under the adverse conditions,
are critical to the mission of SPS design. Careful modeling and simulation to analyze
such contingent scenarios is critical for the design of SPS..

Based on the review in Chapter II, currently several conventional simulation
platforms exist such as Matlab, Matlab Simulink, PSSE, PSCAD, and VTB. These tools
provide the ability to model and analyze the performance of shipboard power
applications. However, those simulation environments are also heavily constrained:

e The application designer needs to have very explicit knowledge of the
simulation tools that the system model is developed based on in order to
assure the application design suitable for the desired specifications without
making syntactic mistakes or violating hierarchical component
dependencies and other constraints

e Although similar design concepts and application development principles
can be used across different tools, it is still relatively time-consuming and

expensive to move the application model from one simulation
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environment to another simulation environment due to the
incompatibilities among different simulation environments and tools
e The model development is greatly limited to the current available tool-
specific syntactic rules and constraints. Therefore it is hard to expand an
existing design for future technologies and system updates
To solve those issues and further facilitate the design practice for application
engineers, the Model-Integrated Computing (MIC) concept has been proposed as an
ultimate solution for diverse domains [123-126]. In this chapter, a model-based software
environment based on the principle of MIC is developed to support and simplify the
modeling and simulation process for SPS that has been illustrated in Chapter III and the
corresponding control and management framework design presented in Chapter IV. The
design principle of this environment is similar to the definition of "Automatic Control
Modeling Environment" (ACME) that has been developed and demonstrated in [93] for
computer system. Therefore the proposed environment can be named as "Automatic
Power system Modeling Environment" (APME). The general objective of this
environment is to provide a flexible and extensible model-integrated graphical software
tool to facilitate the rapid evaluation/analysis of SPS and possibly other micro-grid power
system, as well as the implementation of the performance management strategy
applications according to various testing scenarios. The contribution of this effort can be
summarized as:
e The system design is categorized and represented in a modular and

component based form which facilitates the development process
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e With the introduction of meta-models, designers are now able to work on
the application development with no particular knowledge of the
simulation tools which significantly optimizes the life-cycle cost and
improves the design efficiency

e The synthesized applications and system models can automatically be
translated to scripts based on user's specification which can then be
directly computed by the numerical solver to perform simulation and other
types of analysis

e It can be seen as a seamless vertical integration environment which is
capable to employ various power system tools, existing simulators and
even user-specified tools for SPS application design and overall for other
micro-grid system designs

This chapter is organized as follows: Section 5.2 provides a brief review of the
MIC modeling principle and the software infrastructure of the proposed design. In
Section 5.3, the system model formulation as discussed in Chapter III and the
management strategy design as discussed in Chapter IV are integrated with the proposed
modeling environment to create a convenient tool for applications designers. A brief

conclusion is made in Section 5.4.

5.2 Model Integrated Computing

The concept of MIC is to facilitate the environment designers or application
designers, by enabling the definition of the syntax and semantic specifications in a way
that yields a better overall experience during building and simulating practice of complex

applications [127]. For the implementation of MIC, the complete design process is
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divided into two different levels. Of them, software or system engineers operate on the
meta-level for specifying and configuring a specific domain; while domain engineers
work on the application level to create application models and run simulations. Figure 5.1

demonstrates the structure of a typical MIC design process.

Domain Meta-level process
Model paradigm

Semantic representation
Model interpreter specification
Visualization

Constraints

Engineers

R

Paradigm
e revision __
\

Applfcatlon Application-level process
Designers  [e Model building
® Application validation
* Simulation and analysis Model
e _revision
Interpreter
‘ Application
synthesis/
Executable Code
programs generation

Figure 5.1  MIC concept

In the diagram, meta-level is a domain-independent abstraction that defines a
domain specific environment in terms of modeling concepts, component relations, model-
composition principles and constraints. In other words, meta-level is the specification of
modeling paradigms of system configurations. It contains the base knowledge of rules
and constraints of a specific domain and the corresponding representations.

On the other hand, application level provides an environment for application

model customizations. The objective is to let the environment designers build the model,
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synthesize executable applications, and analyze the simulation results. Principles of
application operations are based on the semantic representations and paradigms defined
on the meta-level. With changes and updates applied to the system, designers can easily
modify the model and re-synthesize application files without building a new system from
scratch.

A model interpreter is used to convert the knowledge captured from the
application models into other types of useful artifacts [128]. For example, it can be used
to generate executable scripts and configurations files. Upon user's request, attributes and
relationships of system components will be acknowledged and synchronized to an
numerical solver, which is normally provided by the specific domain. The interpreter will

then invoke the solver and generate output in the form of data files, graphs, etc [126].

5.2.1 An essential tool: Generic Modeling Environment (GME)

Developed by the Institute of Software Integrated System at Vanderbilt
University, Generic Modeling Environment (GME) is an open source, highly
configurable toolkit that provides a generic solution for model design and application

development for different domain-specific modeling environments [129].

137

www.manaraa.com



e

N

Ix [

o - |
; | 50

Q) Cargorat

4

Carbrolier P =l
T HowefCorbow |G Sugeer]Covned 2] e [N Zuexfare 3] 3 g“""""‘

=l = L Pawsdatdagiabon

- = S shgsaFun

SIS JIGE, & 3 Conkvime

: 5 m B |
Pararnn S R N

: m W M BandvatEn
! W Dms

o) ] -
(&5 ‘ -
!la'llpt‘«ﬂlk‘;?mmﬁwmm -
) O
P
Farsmisamenqsranietece s
i
@ Generic Modeling Environment 12—
@ lf.?: Copyright @ 20002012 Varderik Unwersity
CAJ;OQIENQ paﬁff‘k@“.‘f&'ié MMBMMUS and inbematonal copyright lawes 25 desonbod in the About Bax.
] | " T
i
a
o |
| onkin | '
ey i DI 103% DUE 1A 1098 A1

Figure 5.2 GME interface

A set of generic concepts are embedded in GME to facilitate the creation of
sophisticated systems. Typical modeling concepts provided by GME include: aspects,
attributes, hierarchy, set, reference, and constraints [126, 130]. Within a GME project,
model, atom, reference, connection and set are classified as first-class objects (FCOs)

which will be the main elements to be utilized to develop the meta-model paradigm

[129]:

e Atom: the basic, elementary object, which cannot contain any objects
inside
e Model: the comprehensive object that can contain other objects and inner

structures
e Hierarchy: the containment relationships between objects. Every object

must have one parent and the parent must be a model
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e Aspect: the control unit of visibility that determines which part of the
model is visible or hidden

e Connection: expresses the relationship between objects within the same
model. In order to make a connection, the connected objects must be
visible to each other, i.e. in the same aspect

e Reference: expresses relationships between objects in different system
levels or different systems

e Set: relationships among a group of objects under the same folder with the
same aspect

e Attribute: in order to capture information that has no graphical
representations, FCOs are affiliated with attributes. The common available
attributes are test, integer, double, boolean and enumerated

e (Constraint: rules made specifically for model-composition and attribute
specification.

Apart from the support of MIC based development, GME also offers a user-
friendly graphical design interface. Developing a system model, especially a system with
sophisticated components and hierarchical composition is an error-prone process.
However, instead of the typical, textual representation, GME offers designers a better
option of a more expressive and readable system representation in the GUI. In this way,
the tedious code-based design becomes an easier, more straightforward and more

visualized process [131].
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As a summary, GME is a comprehensive software toolkit that integrates the meta-
model editor, meta-model interpreter, application model editor, domain specific codes

generator and simulation execution environment.

5.2.2  Design procedure

In author’s previous work [132, 133], a similar environment has been developed
primarily for the power flow and optimal power flow analysis for AC SPS applications.
The developed environment is demonstrated to be capable of integrating with MatPower
[134]/PSAT toolkit [135, 136] which are Matlab based power system analysis tools, and
VTB environment [137] to perform the model design and simulation analysis. In this
dissertation, the proposed APSME will be developed based on the same design principle,
but modified to adapt to the requirement of modeling, analysis and performance
management strategy design for MVDC SPS.

The general design procedure can be defined as: i) Preparing of the input data
matrices that defines all the relevant system parameters in an appropriate form; ii)
Invoking the main function to compile the system, perform the desired simulation or
analysis/calculation and generate the results, and iii) Displaying the results and saving
simulation data in predefined structures and directories. In the following section, the
specific environment design that utilizes the MatPower toolbox to perform basic power
flow analysis is provided as a simple and intuitive example to illustrate the generic design
procedure of the development procedure of such environment.

To start with, the modeling principle of Matpower is briefly reviewed. Modeling
of Matpower is based on the standard static power flow analysis models [134]. Equations

describing system components and connections are represented in the form of matrices in
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the Matlab structure. The common fields of the Matlab structure consist of bus, branch,
generator and load for optimal power flow analysis. Among them, branch includes all
forms of transmission lines, transformers and phase shifters, and is modeled as a standard
pi transmission line with series impedance and charging capacitance. Generator is
modeled in the form of power injections at a specific bus with an active part which stands
for active power injection and a reactive part that denotes the reactive power injection.
Load is modeled as constant consumption of active and reactive power from its
interconnected bus. After the specifying the Matpower struct, a case file that combines
and summarizes the system information and component specifications can be formulated.
Commands like runpf and runopf are then invoked to solve the system and provide

simulation results. The solver of Matpower is relying on the Matlab extension (MEX)

files.

5.2.2.1  Step.1: Create the meta-model

Based on the Matpower format requirement, the main components in the system
can be summarized into "Generators", "Buses" and "Loads". "Generator" blocks contain
most of the attributes for the gen matrices in the MatPower data file, "Bus" blocks
contain most of the attributes for the bus matrices, and the "Load" blocks contain the
active and reactive power flow data for the bus matrices. There are also three types of
connections in the system: "branch connection", "generator connection", and "load
connection". Of them, the "branch connection" contains data for the branch matrices
indicating the destination and source bus for a given connection. The "generator

connection" includes data specifying the bus that each generator is connected to, along

with the generator status for the gen matrices. The "load connection" includes the
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information of the bus number each load is connected to and status attributes indicating
the connection status of loads. Once all the components and their attributes are set in the
Meta model, it can be complied and the Meta-model paradigms can be registered for the
design of application model. The complete meta-model is shown as in Figure 5.3 and
Figure 5.4. After compilation, the generated component library as well as the component
property inspector can be found as in Figure 5.5 and Figure 5.6. They are resources that
directly available to designers to drag and drop to formulate the system schematics for

application system models.

Generator

<<Atom>> 0.
Gen_Status ; bool
Power : field |, - 0.* Load
Reactive_Power: field 5z System .ﬁ <<Atom>>
Ay el s <<Model>> Load_Active_Power: _field
ower_Max : el " by .
Reactive_Min : field Load_Reactive_Power : field
Reactive_Max : field
MVA_Base : field
Voltage_Magnitude : field

P I or| orlw ;

Genc ﬂi o Bus_Data i_| LoadConnection
<<Connection>> _-i <<Connection>> <<Atom>> o+ | <<Connection>>

~*|"BranchStatus : bool . :::—?:p"; :. :::g

Rsaclanc;': :::g BasG_V: fieid

. V_Magnitude : field

Susceptance : field | __ V_Angle : field

Phase_Shift : field | e Said

MVA_Rating : field VMIN: Neid

SEunl_Conduclanua : field

Shunt_Susceptance : field

Figure 5.3  General architecture of the Meta model
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Figure 5.4  Attributes definition for the Meta-model components
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Figure 5.5  Component library generated from Meta-model compilation
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‘Object Inspector - Object Inspector - X
Generator 1 | for Kind Bus_Data [ for Kind
Gen_Status True | Blus_MNum 1
Powes 1 Bus_Type 3
Reactive_Power 0 Base V 200
Powes_Min 0 V_Magritude 200
Power_Max 100 ' _Angle 1]
Reactive_Min 0 V_MaxX 250
Reactive_Max 50 V_MIN 1]
MVA_Base 200 Shunt_Conductance 0
Voltage_Magnitude 200 Shunt_Susceptance 0
Object Inspector =
BranchConnection [ ] for Kind Load 4 for Kind
Attibutes | Pref Prooad tibutes | Pref Propetties|
BranchStatus Tiue Load_Active_Power 0
Resistance i} Load_Reactive_Power 1]
Reactance 0
Susceptance i)
Phase_Shift 1]
MVA_Rating 1]

Figure 5.6  Parameter/Specification settings for each type of components

5.2.2.2  Step.2: Create the application model

The application model is created to mimic the model of the notional AC
shipboard power system. Similarly to the MVDC system investigated in this dissertation,
the fundamental topology of an AC SPS includes four turbo-generators connected to a
ring-bus which supplies two propulsion motors and four zonal loads. Other components
like energy storage system or high-level pulsed load are not included for simplicity. The
main focus on the application model design is to evaluate the static state optimal power
flow within the system, therefore the control units and other dynamic components within

the system are also removed. The application model is demonstrated as in Figure 5.7.
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Figure 5.7  Application model design for a notional AC SPS

5.2.2.3  Step.3: Interpreter design-collect system data

The interpreter has three major functions. First of all, it examines the application
model, extracts and collects data from the graphical design interface and save them in the
correct formats. Secondly, it checks the values of each parameter and system settings to
ensure that all the system constraints are satisfied. Last but not least, the interpreter
automatically organizes the system information, creates the Matlab script file and sends
the script to Matlab engine to solve and produce the simulation results. The interpreter is
programmed in Visual C++ environment and can be directly opened by user from the
graphic interface.

In order to collect the system information, the interpreter uses a dynamically
allocated two-dimensional array to save the data. Sample below shows a section of the

interpreter script which collects Bus data entities from the application model.
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“getAttribute()” is one of the main functions used to collect attributes of particular

elements from the system model.

%% Bus_Data_Collection

if((*it)->getObjectMeta().name() == "Bus"){

bus array[0][buses]= (*it)->getAttribute("Bus Num")->getIntegerValue();
bus_array[ 1 ][buses]=(*it)->getAttribute("Bus Type")->getIntegerValue();

bus array[4][buses]=(*it)->getAttribute("Shunt Conductance")->getRealValue();

5.2.2.4  Step.4: Interpreter design-define constraints

As shown in the sample script below, a list of system constraints can be defined
and added to the interpreter. Some of the simple numerical constraints can be checked
based on the values of “flags” or “counters” once the data collection is complete. Other
logic constraints, such as the statement that “every bus needs to have a unique bus
number”, are checked using multiple “for” loops during the data processing. If any of the
constraints is found to be true, it indicates a violation and an “error flag” is set to prevent
the furthering processing. In addition, an error message will be displayed on the console
of GME describing the error information for the user. If no error has occurred, the

interpreter will continue with the file generation.

%% Generator_Connection_Check

if(gen_conn_check < total _gens){

error = true; Console::Out::WriteLine("Error: Generator(s) not Connected."); }

else if(gen_conn_check > total gens){

error = true;

Console::Out:: WriteLine("Error: Multiple connections from a single
Generator.");}
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Interpreter started...
Error: Generator(s) not Connected.
Interpreter completed...

Figure 5.8  Error message displayed if constraints are violated

5.2.2.5  Step.5: Interpreter design-synthesis of configuration information

Sample script below shows the approach to generate the executable Matlab script.
A variety of “for” loops are used to traverse through the arrays to retrieve the data and
print them out in the correct format. At the end of the script, the interpreter also creates
the command lines to execute the case file based on the type of analysis that indicated by

the user. Once the data file is ready, the interpreter will invoke the Matlab engine.

%% Configuration File Synthesis

fprintf(matlab_file, "function mpc = case 1");
fprintf(matlab_file, "mpc.version = '2"");
fprintf(matlab_file, "mpc.baseMVA = 10");
fprintf(matlab_file, "mpc.bus =[ \n");

%% Print_ Bus_Array
For (counter] = O;counter] < total buses;counter]-++){
For (counter2 = 0;counter2 < 11;counter2++){
If (counter2 == 6)
fprintf(matlab_file,"\t1");
if (counter2 == 9)
fprintf(matlab_file,"\t1");
fprintf(matlab_file,"\t%.2f",bus_array[counter2][counterl]); }
fprintf(matlab_file,";\n");}
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5.2.2.6  Step.6: Interpreter design-invoke Matpower solver

Matlab engine contains a series of API functions which supports C/C++, Fortran
among many [138]. These functions can be used to invoke Matlab engine and execute
Matlab scripts directly in the programming environments. Data (variables, arrays,
matrices, etc.) can be transferred between the C++ workspace and Matlab workspace bi-
directionally. The sample below shows the basic command lines used to call Matlab

engine from C++.

%% Invode Matlab_Engine and Solve

Engine *ep; %% define Matlab engine pointer

char MatlabPath[100]; %%current Matlab Path

char p[6000]; %%Matlab return buffer

int n=6000; %%Matlab return buffer size

ep=engOpen(NULL);

engOutputBuffer(ep, p, n); %%push the Matlab output into the buffer
TCHAR NPathfMAX PATH]; %%current C++ project path
GetCurrentDirectory(MAX PATH, NPath);

strcpy(MatlabPath,"cd ");

strcat(MatlabPath, NPath);

engEvalString(ep,MatlabPath); %%change the Matlab project path to the C++
path

engEvalString(ep,"Matpower"); %%execute the m-file
Console::Out::WriteLine(p);

5.2.2.7  Step.7: Display the simulation results

The simulation results are automatically generated and presented to user as shown

in Figure 5.9.
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Figure 5.9  Simulation outputs

5.3 APME design

To include the contents proposed in this dissertation covering the model
definition, application development and management strategy implementation, the
existing environment has been expanded and modified for the APME platform.

APME essentially contains three main components: the dynamic power system
model, the interface model, and the management system model. Among them, the system
model generally refers to the complete power system represented in the form of DAE
sets. For the purpose of this dissertation, we will use the model developed and validated
in Chapter III as the dynamic system. Management system model, however, refers to the
management framework developed in Chapter I'V. Last but not least, the interface model

provides the necessary means of information exchanging in between.
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Figure 5.10  Architecture of the system meta-model

The architecture diagram of the Meta model for the APME design can be found in
Figure 5.10 . Among them, the elements ActualSystem, SystemModel, Controller and
Interface are the essential components under the main SystemArchitecture class. Those
classes can be seen as the corresponding representations for the system component
"Actual System", "System Module", "Controller Module", and "Measurement" as shown
in Figure 4.1 respectively. The detailed architecture and decomposition are specified
within each model.

The ActualSystem model refers to the actual system that the control management
system will be applied to. It could be the physical or hardware testbed for MVDC SPS
simulation or the equivalent form of the detailed baseline Simulink model.

The SystemModel model is developed based on the DAE sets as set forth in
Chapter III. Unlike ActualSystem, it can be seen as an abstracted form to approximate

the actual system behaviors.
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The Interface model contains the necessary components to capture the system
state variables for the controller. It acts like an interface to connect the physical system
which is represented as "ActualSystem" and the abstracted system which is represented
as "SystemModel". For this dissertation, it is assumed that all the related system states
such as machine dynamics and the voltage/current measurements can be directly accessed
and accurately transmitted by the Interface component.

Last but not least, the Controller model refers to the performance management
system that has been developed in Chapter IV. The generic control principle function
MPC() along with the basic search strategies like Algorithm I and Algorithm 2 proposed
in Chapter IV can be set with appropriate specifications including the depth of the
prediction horizon, the initial system states, the control input sets, and the constraints to
be utilized.

The detailed meta-model of SystemModel can be found as in Figure 5.11. Based
on the development in Chapter 111, the essential components that need to be used to form
a complete system include: switches, generators, different types of loads, propellers
represented in the form of induction motors with filters, and the main DC distribution
bus. The attributes of each type of the component are also defined and the specific values
of those parameters need to be filled by application engineers later based on the operation

scenarios.
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Figure 5.12 Meta-model for the "Controller"

In a similar way, the meta-model of the Controller model can also be developed

as shown in Figure 5.12. The prediction horizon, control sampling interval, basic search
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strategy (Algorithm I/II for discrete control input sets or Algorithm III for continuous
control input sets) and the initial system values can be set to define the basic operation
principles and properties of the controller. "ControllnputSet" determines the candidate
control inputs that can be available for use which includes the data type, the possible
range of the input data set, or a detailed set of inputs under certain circumstances. The
reference system state trajectory or reference point for the Controller is specified in
"SetPoint". Currently off-line calculation result is used to determine the optimal system
trajectory or optimal reference point. The "UtilityFunction" model determines the utility
functions, the system constraints and the detailed working scenarios. For the preliminary
model development, we limit the utility functions that can be achieved with the proposed
environment. Designers have to choose from a series of preset optimization functions
under the specific conditions that are covered in Chapter IV. Customized utility
functions/constraints/operation scenarios are not yet supported in this version. However,
the detailed values of the utility function specifications, working constraints, weighting
factors for different system elements and operation scenarios can still be changed.

Once the meta-model is created and successfully complied, the application model
can be developed accordingly. The interface for the system architecture design is shown
in Figure 5.13. An example of application model created based on the SystemModel is

shown in Figure 5.14 while the Controller setting interface is shown in Figure 5.15.
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ControllnputSet SetPoint

™

UtilityFunction

Figure 5.15 The interface to set the Controller parameters

Once the designer finishes the system structure development as well as the
detailed specifications for each components, the created system model can then be
processed by the interpreter to extract the necessary information, automatically generate
the script file, and invoke Matlab engine to simulate the system and provide the results to
users in the form of figures as demonstrated in Section 5.2.2. The detailed procedure is

similar to the previous case study and will not be listed here for simplicity.

5.4 Conclusion

In this chapter, the development a MIC-based modeling, simulation and analysis
environment is illustrated. The proposed software environment is capable of
incooperating with the previously proposed system modeling strategy and the
performance management framework developed to provide a generic solution for

application designs and control strategy synthesis.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation presents three categories of research work towards the design of
an automated performance management system for MVDC SPS during transient period:
1) Power system modeling and simulation: a highly simplified representation of the
notional baseline MVDC SPS model is developed which facilitates the subsequent
design. The proposed modeling strategy is tailored specifically for the time frame of this
dissertation and is proven accurate and efficient based on a series of testing scenarios. 2)
Control framework design: The detailed designing procedure of the proposed
management framework is illustrated. A series of case studies utilizing the proposed
management system for different system-level applications are included to validate the
MPC-based designing concept. An in-depth evaluation of the performance of the
proposed management system is also presented based on the case studies. Specific
performance indices, controller settings and essential factors have been identified to
characterize the effectiveness and efficiency for a given control strategy. The simulation
results demonstrate and support the statement that the proposed performance
management system could effectively optimize the system dynamic behaviors during the
transient phase. 3) Software implementation and tool development: a model-based

software environment is developed in GME to allow easy creation of system models and
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automatic application synthesis. This tool provides direct support for application
designers to create system models using the proposed modeling strategy, develop control
strategies based on the proposed management framework concept and automatically

implement the design.

6.2 Future work directions

The research contributions presented in this dissertation can be further extended
as follow:

e Further improve the simulation speed of the proposed management
framework for practical application designs. Currently for complicated
systems or complicated optimization problems, as indicated by the testing
results from the case studies I/11, the generation of control strategy still
takes significantly long even with the use of efficient optimization
functions or solvers. This issue can be solved via two approaches, one is to
distribute the centralized control hierarchy into different nodes so the
calculation can be partitioned and executed in parallel as seen in [139].
The other approach is to 1) either parallelize the process of the
optimization solver such as ga and fmincon, so the time required for each
iteration of the complete system optimization can be reduced; 2) or to
parallelize the power system model, thus different parts of the system can
be evaluated and optimized simultaneously on different cores/threads as
seen in [140].

e More case-studies can be added to further evaluate the performance of the

proposed management framework under different operation scenarios. A
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variety of suggested case studies is made available from ESRDC
document and therefore provides good sources of information with regards
to the system-level dynamic studies especially under large system
disturbances.

e Other system components can be added in order to expand the applicable
scale of the model library such as detailed model of isolated DC-DC
converters, AC transformers and other types of service loads. By doing so,
the modeling principle proposed in this dissertation can be expanded for
studies of short-term stability, governor and load control design, or even
long term dynamics by including the appropriate level of details of the

corresponding components.
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